用綜合法證明:[sinθ(1+sinθ)+cosθ(1+cosθ)][
2
sin(θ+
π
4
)-1]=sin2θ.
考點(diǎn):綜合法與分析法(選修)
專題:證明題,三角函數(shù)的求值
分析:運(yùn)用平方差公式,以及二倍角公式,即可得到綜合法的證明過(guò)程.
解答: 證明:∵左邊=(sinθ+cosθ+1)(sinθ+cosθ-1)…(2分)
=(sinθ+cosθ)2-1…(4分)
=2sinθcosθ…(5分)
=sin2θ=右邊
∴原等式成立.…(6分)
點(diǎn)評(píng):本題考查綜合法,考查三角函數(shù)知識(shí),正確運(yùn)用綜合法是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
4
5
,且α為第三象限角,求sinα及sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處的切線斜率均為0.
(1)求a,b的值;
(2)過(guò)點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)的最大值為8,且自變量取2和-1時(shí)的函數(shù)值都為-1,求解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)若函數(shù)y=f(x)是偶函數(shù),求實(shí)數(shù)a的值;
(2)若a=2,求f(x)的最小值;
(3)對(duì)于函數(shù)y=m(x),在定義域內(nèi)給定區(qū)間[a,b],如果存在x0(a<x0<b),滿足m(x0)=
m(b)-m(a)
b-a
,則稱函數(shù)m(x)是區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)“均值點(diǎn)”.如函數(shù)y=x2是[-1,1]上的平均值函數(shù),0就是它的均值點(diǎn).現(xiàn)有函數(shù)g(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x-1-16x+1的定義域與函數(shù)g(x)=
x+2
-
-x-1
的定義域相同,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(2
x
-
1
x
6的展開式中的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x||x-a|<4},B={x||x-2|>3},且A∪B=R,實(shí)數(shù)a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos
3
x,a等于拋擲一顆均勻的正六面體骰子得到的點(diǎn)數(shù),則y=f(x)在[0,4]上有偶數(shù)個(gè)零點(diǎn)的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案