(2013•肇慶一模)設(shè)集合M={A0,A1,A2,A3,A4,A5},在M上定義運(yùn)算“?”為:Ai?Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(a?a)?A2=A0的a(a∈M)的個(gè)數(shù)為( 。
分析:本題為信息題,學(xué)生要讀懂題意,運(yùn)用所給信息式解決問題,對(duì)于本題來說,可用逐個(gè)驗(yàn)證法.
解答:解:當(dāng)a=A0時(shí),(a⊕a)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0,
當(dāng)a=A1時(shí),(a⊕a)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A0=A0
當(dāng)a=A2時(shí),(a⊕a)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2≠A0,
當(dāng)a=A3時(shí),(a⊕a)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A4=A0
當(dāng)a=A4時(shí),(a⊕a)⊕A2=(A4⊕A4)⊕A2=A0⊕A2=A2≠A0
當(dāng)a=A5時(shí),(a⊕a)⊕A2=(A5⊕A5)⊕A2=A2⊕A2=A0=A0
滿足題意的有3個(gè).
故選B.
點(diǎn)評(píng):本題考查學(xué)生的信息接收能力及應(yīng)用能力,注意被4除的余數(shù)的理解,考查學(xué)生的思維能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知等差數(shù)列{an},滿足a3+a9=8,則此數(shù)列的前11項(xiàng)的和S11=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了x•46%=230人,回答問題統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) 分組 回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組 [15,25) 5 0.5
第2組 [25,35) a 0.9
第3組 [35,45) 27 x
第4組 [45,55) B 0.36
第5組 [55,65) 3 y
(Ⅰ)分別求出a,b,x,y的值;
(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知函數(shù)f(x)=Asin(4x+φ)(A>0,0<φ<π)在x=
π
16
時(shí)取得最大值2.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若α∈[-
π
2
,0]
,f(
1
4
α+
π
16
)=
6
5
,求sin(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)(坐標(biāo)系與參數(shù)方程選做題) 
已知直線l1=
x=1+3t
y=2-4t
(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,又點(diǎn)A(1,2),則|AB|=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)an;
(3)設(shè)數(shù)列{bn}滿足b1=
1
2
,bn+1=
1
ak
b
2
n
+bn
,求證:當(dāng)n≤k時(shí)有bn<1.

查看答案和解析>>

同步練習(xí)冊答案