【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
【答案】(1)的普通方程為.的直角坐標(biāo)方程為 (2)(-1,0)或(2,3)
【解析】
(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。
(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解。
解:(1)由消去參數(shù),得.
即直線的普通方程為.
因?yàn)?/span>
又,
∴曲線的直角坐標(biāo)方程為
(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓
設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|
即,整理得,解得
所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測(cè)量其直徑后,整理得到下表:
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(I)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):
①;
②;
③.
判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙,若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為了.試判斷設(shè)備的性能等級(jí).
(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”.
①?gòu)脑O(shè)備的生產(chǎn)流水線上隨機(jī)抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望;
②從樣本中隨意抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(2,2),圓,過(guò)點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)機(jī)公司出售收割機(jī),一臺(tái)收割機(jī)的使用壽命為五年,在農(nóng)機(jī)公司購(gòu)買收割機(jī)時(shí)可以一次性額外訂購(gòu)買若干次維修服務(wù),費(fèi)用為每次100元,每次維修時(shí)公司維修人員均上門服務(wù),實(shí)際上門服務(wù)時(shí)還需支付維修人員的餐飲費(fèi)50元/次;若實(shí)際維修次數(shù)少于購(gòu)買的維修次數(shù),則未提供服務(wù)的訂購(gòu)費(fèi)用退還50%;如果維修次數(shù)超過(guò)了購(gòu)買的次數(shù),農(nóng)機(jī)公司不再提供服務(wù),收割機(jī)的維修只能到私人維修店,每次維修費(fèi)用為400元,無(wú)須支付餐飲費(fèi);--位農(nóng)機(jī)手在購(gòu)買收割機(jī)時(shí),需決策一次性購(gòu)買多少次維修服務(wù).
為此,他擬范收集整理出一臺(tái)收割機(jī)在五年使用期內(nèi)維修次數(shù)及相應(yīng)的頻率如下表:
(1)如果農(nóng)機(jī)手在購(gòu)買收割機(jī)時(shí)購(gòu)買了6次維修,在使用期內(nèi)實(shí)際維修的次數(shù)為5次,這位農(nóng)機(jī)手的花費(fèi)總費(fèi)用是多少?如果實(shí)際維修的次數(shù)是8次,農(nóng)機(jī)手的花費(fèi)總費(fèi)用又是多少?
(2)農(nóng)機(jī)手購(gòu)買了一臺(tái)收制機(jī),試在購(gòu)買維修次數(shù)為6次和7次的兩個(gè)數(shù)據(jù)中,根據(jù)使用期內(nèi)維修時(shí)花費(fèi)的總費(fèi)用期望值,幫助農(nóng)機(jī)手進(jìn)行決策.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關(guān)需要回答三個(gè)問(wèn)題,其中前兩個(gè)問(wèn)題回答正確各得分,回答不正確得分,第三個(gè)問(wèn)題回答正確得分,回答不正確得分.如果一個(gè)挑戰(zhàn)者回答前兩個(gè)問(wèn)題正確的概率都是,回答第三個(gè)問(wèn)題正確的概率為,且各題回答正確與否相互之間沒(méi)有影響.若這位挑戰(zhàn)者回答這三個(gè)問(wèn)題總分不低于分就算闖關(guān)成功.
(Ⅰ)求至少回答對(duì)一個(gè)問(wèn)題的概率;
(Ⅱ)求這位挑戰(zhàn)者回答這三個(gè)問(wèn)題的總得分X的分布列;
(Ⅲ)求這位挑戰(zhàn)者闖關(guān)成功的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時(shí)期,按照國(guó)務(wù)院的發(fā)展戰(zhàn)略布局,以及國(guó)家郵政管理總局對(duì)快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)1kg的包裹收費(fèi)10元;重量超過(guò)1kg的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(guò)1kg(不足1kg,按1kg計(jì)算)需再收5元.某縣SF分代辦點(diǎn)將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:
重量(單位:kg) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
件數(shù) | 43 | 30 | 15 | 8 | 4 |
對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
件數(shù) | 50 | 150 | 250 | 350 | 450 |
天數(shù) | 6 | 6 | 30 | 1 | 6 |
以上數(shù)據(jù)已做近似處理,將頻率視為概率.
(1)計(jì)算該代辦未來(lái)5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;
(2)①估計(jì)該代辦點(diǎn)對(duì)每件包裹收取的快遞費(fèi)的平均值;
②根據(jù)以往的經(jīng)驗(yàn),該代辦點(diǎn)將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),其余的用作其他費(fèi)用.目前該代辦點(diǎn)前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,日工資110元.代辦點(diǎn)正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后代辦點(diǎn)每日利潤(rùn)的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變)得到函數(shù)的圖像,則下列說(shuō)法正確的是( )
A. 函數(shù)的最小正周期為
B. 函數(shù)在區(qū)間上單調(diào)遞增
C. 函數(shù)在區(qū)間上的最小值為
D. 是函數(shù)的一條對(duì)稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com