已知數(shù)列{ an}的通項(xiàng)公式是 an=數(shù)學(xué)公式,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是


  1. A.
    an>an+1
  2. B.
    an<an+1
  3. C.
    an=an+1
  4. D.
    與n的取值有關(guān)
B
分析:由函數(shù) t=b 是關(guān)于變量n的減函數(shù),可得an= 是關(guān)于變量n的增函數(shù),從而得出結(jié)論.
解答:∵數(shù)列{ an}的通項(xiàng)公式是 an=,其中a、b均為正常數(shù),∴an=
再由函數(shù) t=b 是關(guān)于變量n的減函數(shù),
∴an= 是關(guān)于變量n的增函數(shù).
∴an<an+1 ,
故選B.
點(diǎn)評(píng):本題主要考查數(shù)列的單調(diào)性,這里通過(guò)轉(zhuǎn)化應(yīng)用函數(shù)的單調(diào)性來(lái)解決.?dāng)?shù)列是一類特殊的函數(shù),函數(shù)意識(shí)要加強(qiáng),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{
anpn-1
}
的前n項(xiàng)和Sn=n2+2n(其中常數(shù)p>0),數(shù)列{an}的前n項(xiàng)和為T(mén)n
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求Tn的表達(dá)式;
(Ⅲ)若對(duì)任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列(an}滿足:a1=
1
2
,an+1=
n+1
2n
an,數(shù)列{bn}滿足nbn=an(n∈N*).
(1)證明數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式:
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)在(2)的條件下,若集合{n|
(n2+n)(2-Sn)
n+2
≥λ,n∈N*}=∅.求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列(an}為Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=(2n-1)an,求數(shù)列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且數(shù)列{cn}中的每一項(xiàng)總小于它后面的項(xiàng),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{
a
 
n
}
的前n項(xiàng)和為Sn,且向量
a
=(n,Sn)
b
=(4,n+3)
共線.
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)求數(shù)列{
1
nan
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列數(shù)列{an}前n項(xiàng)和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值為8.
(Ⅰ)確定常數(shù)k并求{an}的通項(xiàng)公式;
(Ⅱ)若bn=9-2an,求數(shù)列{
1
bnbn+1
}
前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案