已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列xn是一個(gè)公差為2的等差數(shù)列,滿足f(x8)+f(x9)+f(x10)+f(x11)=0,則x2011的值等于   
【答案】分析:設(shè)x8=a,則x9=a+2,x10=a+4,x11=a+6,則f(a)+f(a+2)+f(a+4)+f(a+6)=0,結(jié)合奇函數(shù)關(guān)于原點(diǎn)的對(duì)稱性可知,f(a)+f(a+6)=0,f(a+2)+f(a+4)=0.所以f(a+3)=0=f(0),x8=-3.設(shè)數(shù)列{xn}通項(xiàng)xn=x1+(n-1).x8=x1+14=-3.x1=-17.通項(xiàng)xn=2n-19.由此能求出x2011的值.
解答:解:設(shè)x8=a,則x9=a+2,x10=a+4,x11=a+6,
∴f(a)+f(a+2)+f(a+4)+f(a+6)=0,
且f(a)<f(a+2)<f(a+4)<f(a+6),
∴f(a)<0且f(a+6)>0.
結(jié)合奇函數(shù)關(guān)于原點(diǎn)的對(duì)稱性可知,f(a)+f(a+6)=0,
f(a+2)+f(a+4)=0.
∴f(a+3)=0=f(0),
即a+3=0.
∴x8=-3.
設(shè)數(shù)列{xn}通項(xiàng)xn=x1+2(n-1).
∴x8=x1+14=-3.
∴x1=-17.
∴通項(xiàng)xn=2n-19.
∴x2011=2×2011-19=4003.
故答案為:4003.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意遞推公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在(-1,1)上的增函數(shù),如果f(1-a)+f(1-a2)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列xn是一個(gè)公差為2的等差數(shù)列,滿足f(x8)+f(x9)+f(x10)+f(x11)=0,則x2011的值等于
4003

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),則不等式f(x-1)+f(1-x2)<0的解集為
(1,
2
]
(1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(3x-2)<0,則x的取值范圍為
1
3
≤x<
3
4
1
3
≤x<
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在R上的增函數(shù),且f(x-1)+f(3x-1)<0,則x的取值范圍為
x<
1
2
x<
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案