【解析】。由題得 所以不等式的解集為。
科目:高中數(shù)學 來源: 題型:
【解析】本小題考查直線方程的求法。畫草圖,由對稱性可猜想。
事實上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點F滿足此方程,又原點O也滿足此方程,故為所求的直線OF的方程。
答案。
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(北京卷解析版) 題型:解答題
設A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因為,,所以
(2),
因為,所以,
所以
當d=0時,取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設,,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹?shù)倪壿嬎季S能力
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省高一期中考試文科數(shù)學試卷A卷(解析版) 題型:解答題
已知△的內(nèi)角所對的邊分別為且.
(1) 若, 求的值;
(2) 若△的面積 求的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關系等基礎知識,考查運算求解能力。第一問中,得到正弦值,再結合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com