【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為 .
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
【答案】
(1)解:向量 ,
則函數(shù)
=2 sinωxcosωx+2cos2ωx﹣1
= sin2ωx+cos2ωx
=2sin(2ωx+ ),
由函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為 ,
T=π= ,解得ω=1;
∴f(x)=2sin(2x+ ),
令﹣ +2kπ +2kπ,k∈Z,
解得﹣ +kπ≤x≤ +kπ,k∈Z,
∴函數(shù)f(x)的單調增區(qū)間為[﹣ +kπ, +kπ],k∈Z
(2)解:△ABC滿足f(A)=1,
∴2sin(2A+ )=1,
由0<A<π,得 <2A+ < ,
∴2A+ = ,解得A= ;
由a=3,得| |=| ﹣ |=a=3①,
由BC邊上的中線長為3,得| + |=6②;
由①②組成方程組,解得 = ,
∴| || |= ,
∴△ABC的面積為S= | || |sin =
【解析】(1)根據(jù)平面向量數(shù)量積的運算和三角恒等變換化f(x)為正弦型函數(shù);根據(jù)對稱軸求出周期和ω,寫出解析式,求出函數(shù)f(x)的單調增區(qū)間;(2)根據(jù)f(A)=1求出A的值,再由a=| |=3,BC邊上的中線長得| + |=6;求出 的值,從而求出| || |的值,即可求出△ABC的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)x,y滿足不等式組 ,若目標函數(shù)z=kx+y僅在點(1,1)處取得最小值,則實數(shù)k的取值范圍是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在六面體ABCD﹣A1B1C1D1中,M,N分別是棱A1B1 , B1C1的中點,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1 .
(1)證明:BB1⊥平面ABCD;
(2)已知六面體ABCD﹣A1B1C1D1的棱長均為 ,cos∠BAD= ,設平面BMN與平面AB1D1相交所成二面角的大小為θ求cosθ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點. (Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:面DBG⊥面BDF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李冶(1192﹣1279),真定欒城(今屬河北石家莊市)人,金元時期的數(shù)學家、詩人、晚年在封龍山隱居講學,數(shù)學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五棱錐P﹣ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,側棱PA與底面ABCDE所成角為45°,S△PBE= ,點M在側棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com