準線方程為x=1的拋物線的標準方程是(   )
A.B.C. D.
A

試題分析:由題意可知:=1,∴p=2且拋物線的標準方程的焦點在x軸的負半軸上
故可設拋物線的標準方程為:y2=-2px,將p代入可得y2=-4x.選A.
點評:本題主要考查拋物線的基本性質(zhì)以及計算能力.在涉及到求拋物線的標準方程問題時,一定要先判斷出焦點所在位置,避免出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

知橢圓的左右焦點為F1,F(xiàn)2,離心率為,以線段F1 F2為直徑的圓的面積為,   (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:



4

1

2
4

2
(1)求的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則方程不能表示的曲線為(      )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,一個頂點為,且其右焦點到直線的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設直線過定點,與橢圓交于兩個不同的點,且滿足
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的準線過雙曲線的一個焦點, 且雙曲線的離心率為2, 則該雙曲線的方程為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為在拋物線上,且,弦的中點在其準線上的射影為,則的最大值為________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,在拋物線上,且,弦的中點在其準線上的射影為,則的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個頂點的坐標,焦距的一半為3的橢圓的標準方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案