8.斜二測畫法中,位于平面直角坐標系中的點M(4,4)在直觀圖中的對應點是M′,則點M′的坐標為(4,2).

分析 根據(jù)平面直角坐標系化為平面直觀圖,平行于x軸的坐標長度不變,平行于y軸的坐標長度變?yōu)樵瓉淼?\frac{1}{2}$,寫出坐標即可.

解答 解:斜二測畫法中,位于平面直角坐標系中的點M(4,4),
在直觀圖中的對應點是M′,則點M′的坐標為(4,2).
故答案為:(4,2).

點評 本題考查了平面直觀圖的畫法與應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.函數(shù)f(x)=$\frac{x-a}{lnx}$的圖象總在函數(shù)F(x)=$\sqrt{x}$的圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.證明.對于任意兩個向量$\overrightarrow{a}$,$\overrightarrow$都有||$\overrightarrow{a}$|-|$\overrightarrow$||≤|$\overrightarrow{a}+\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=($\sqrt{3},\sqrt{5}$),|$\overrightarrow$|=2,求滿足下列條件的$\overrightarrow$的坐標.
(1)$\overrightarrow{a}$⊥$\overrightarrow$(2)$\overrightarrow{a}$∥$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,M,N,P分別是AB,BC,CA邊上靠近A,B,C的三等分點,O是△ABC平面上的任意一點,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,則$\overrightarrow{OM}$+$\overrightarrow{ON}$+$\overrightarrow{OP}$=$\frac{1}{3}\overrightarrow{{e}_{1}}$$-\frac{1}{2}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.用五點法分別作下列函數(shù)在[-2π,2π]上的圖象:
(1)y=1-sinx;
(2)y=sin(-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{2}$,則△ABC的形狀是( 。
A.等邊三角形B.銳角三角形C.斜三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知α,β是關(guān)于x的方程x2+2(cosθ+1)x+cos2θ=0的兩個根,是否存在θ∈[-$\frac{π}{4}$,$\frac{π}{4}$],使|α-β|≤2$\sqrt{2}$,若存在,試求角θ的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)y=f(x)對任意實數(shù)x,都有f(a+x)+f(x)=b.則y=f(x)是以2a為周期的函數(shù).

查看答案和解析>>

同步練習冊答案