A. | (0,1) | B. | (-3,0) | C. | (-2,0) | D. | (-1,0) |
分析 為便于處理,不妨設t=($\frac{1}{2}$)x,于是可轉化為求關于t的方程t2+2t+a=0的根的問題,明顯地,原方程有正實數(shù)解,即可轉化為關于t的方程在(0,1)上有解的問題.于是問題迎刃而解.
解答 解:設t=($\frac{1}{2}$)x,則有:a=-[($\frac{1}{2}$)2x+2($\frac{1}{2}$)x]=-t2-2t=-(t+1)2+1.
原方程有正數(shù)解x>0,則0<t=($\frac{1}{2}$)x<($\frac{1}{2}$)0=1,
即關于t的方程t2+2t+a=0在(0,1)上有實根.
又因為a=-(t+1)2+1.
所以當0<t<1時有1<t+1<2,
即1<(t+1)2<4,
即-4<-(t+1)2<-1,
即-3<-(t+1)2+1<0,
即得:-3<a<0,
故選:B.
點評 本題考查函數(shù)最值的求法,二次方程根的分布問題,以及對含參數(shù)的函數(shù)、方程的問題的考查,亦對轉化思想,換元法在解題中的應用進行了考查.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$ | B. | $f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$ | ||
C. | $f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$ | D. | $f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 減函數(shù) | B. | 增函數(shù) | C. | 先增后減 | D. | 先減后增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{2}+1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com