(本題12分)為了研究化肥對小麥產(chǎn)量的影響,某科學(xué)家將一片土地劃分成200個的小塊,并在100個小塊上施用新化肥,留下100個條件大體相當(dāng)?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)
表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量





頻數(shù)
10
35
40
10
5
表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表
小麥產(chǎn)量




頻數(shù)
15
50
30
5
(10)     完成下面頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;
(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”
表3:
 
小麥產(chǎn)量小于20kg
小麥產(chǎn)量不小于20kg
合計
施用新化肥


 
不施用新化肥


 
合計
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

(1)見解析; (2) 施用化肥的平均產(chǎn)量為21.5,不施用新化肥的平均產(chǎn)量為17.5; (3)列量表見解析,99.5%。

解析試題分析:
4分
(2)施用化肥的一小塊土地小麥平均產(chǎn)量為
5×0.1+15×0.35+25×0.4+35×0.1+45×0.05=21.5              ………6分
不施用新化肥的一小塊土地小麥平均產(chǎn)量為
5×0.15+15×0.5+25×0.3+35×0.05=17.5                     ………8分
(3)表3

 
小麥產(chǎn)量小于20kg
小麥產(chǎn)量不小于20kg
合計
施用新化肥


100
不施用新化肥


100
合計
110
90

       ………11分
由于,所以有99.5%的把握認為施用新化肥和不施用新化肥的小麥產(chǎn)量有差異                       ………12分
考點:頻率分布直方圖;列聯(lián)表;獨立性檢驗。
點評:在頻率分布直方圖中:小長方形的面積=組距×=頻率,各個長方形的面積之和等于1。屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

調(diào)查某桑場采桑員和輔助工桑毛蟲皮炎發(fā)病情況結(jié)果如下表:利用2×2列聯(lián)表的獨立性檢驗估計“患桑毛蟲皮炎病與采桑”是否有關(guān)?認為兩者有關(guān)系會犯錯誤的概率是多少?

 
采桑
不采桑
合計
患者人數(shù)
18
12
 
健康人數(shù)
5
78
 
合計
 
 
 

P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:.

(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中按分層抽樣抽取4人,選其中2人為數(shù)學(xué)課代表,求這兩個人的數(shù)學(xué)成績不在同一分?jǐn)?shù)段的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某高校在2013年的自主招生考試成績中隨機抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.

(1)求出第4組的頻率;
(2)如果用分層抽樣的方法從“優(yōu)秀”和“良好” 的學(xué)生中選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)一個質(zhì)地均勻的正四面體的四個面上分別標(biāo)示著數(shù)字1、2、3、4,一個質(zhì)地均勻的骰子(正方體)的六個面上分別標(biāo)示數(shù)字1、2、3、4、5、6,先后拋擲一次正四面體和骰子。
⑴列舉出全部基本事件;
⑵求被壓在底部的兩個數(shù)字之和小于5的概率;
⑶求正四面體上被壓住的數(shù)字不小于骰子上被壓住的數(shù)字的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)惠州市在每年的春節(jié)后,市政府都會發(fā)動公務(wù)員參與到植樹活動中去.林管部門在植樹前,為保證樹苗的質(zhì)量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出的高度如下(單位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根據(jù)抽測結(jié)果,完成答題卷中的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;

(2)設(shè)抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入如圖程序框圖進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表.


27
38
30
37
35
31

33
29
38
34
28
36
 
(1)畫出莖葉圖,由莖葉圖判斷哪位選手的成績較穩(wěn)定?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、中位數(shù)、標(biāo)準(zhǔn)差,并判斷選誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟(本大題共6個大題,共76分)。
17.(12分)以下資料是一位銷售經(jīng)理收集來的每年銷售額和銷售經(jīng)驗?zāi)陻?shù)的關(guān)系:

銷售經(jīng)驗(年)
 
1
 
3
 
4
 
4
 
6
 
8
 
10
 
10
 
11
 
13
 
年銷售額(千元)
 
80
 
97
 
92
 
102
 
103
 
111
 
119
 
123
 
117
 
136
 
 (1)依據(jù)這些數(shù)據(jù)畫出散點圖并作直線=78+4.2x,計算(yii2; 
(2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計算;
(3)比較(1)和(2)中的殘差平方和的大。

查看答案和解析>>

同步練習(xí)冊答案