在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,AA1=AD=DC=2,M∈平面ABCD,且D1M⊥平面A1C1D,求證:A1D=DM.
考點:直線與平面垂直的判定,棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:由D1M⊥平面A1C1D可知D1M1 ⊥A1D,由三垂線定理逆定理得到M在面DAA1D1上的射影為A,同理M在面DCC1D1上的射影為C.利用DM2=DA2+DC2=8 即可求出DM.
解答: 證明:∵D1M⊥平面A1C1D,∴A1D⊥D1M,
設(shè)D1M在面ADD1A1上的射影為D1M1,
由三垂線定理逆定理,D1M1 ⊥A1D,
∵AA1=AD=DC=2,∴D1A⊥A1D,M1與A重合.
同理M在面DCC1D1上的射影為C.
所以AMCD是正方形,∴DM2=DA2+DC2=8,DM=2
2

A1D=
22+22
=2
2

∴A1D=DM.
點評:本題考查直線和平面,直線和直線的位置關(guān)系,距離的計算,得出AMCD是正方形是關(guān)鍵.考查空間想象、計算的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(x-1)(x2+3x-10)的零點個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

變量x,y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1
,
①設(shè)z=
y
x
,求z的最小值;
②設(shè)z=x2+y2求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)ξ依次為1,2,…,8,其中ξ≥5為標準A,ξ≥3為標準B,產(chǎn)品的等級系數(shù)越大表明產(chǎn)品的質(zhì)量越好,已知某廠執(zhí)行標準B生產(chǎn)該產(chǎn)品,且該廠的產(chǎn)品都符合相應的執(zhí)行標準.從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
  ξ  3  4  5  6  7  8
 件數(shù)  9  6  6  3  3  3
該行業(yè)規(guī)定產(chǎn)品的等級系數(shù)ξ≥7的為一等品,等級系數(shù)5≤ξ<7的為二等品,等級系數(shù)3≤ξ<5的為三等品.
(1)試分別估計該廠生產(chǎn)的產(chǎn)品的一等品率、二等品率和三等品率;
(2)已知該廠生產(chǎn)一件一等品的利潤為10元,生產(chǎn)一件二等品或三等品的利潤為2元.
用這個樣本的頻率分布估計總體分布,將頻率視為概率,從該廠生產(chǎn)的產(chǎn)品中任取三件,其總利潤記為Y,求Y的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=kex,g(x)=
1
k
lnx,其中k>0.若函數(shù)f(x),g(x)在它們的圖象與坐標軸交點處的切線互相平行.
(1)求k的值;
(2)是否存在直線l,使得l同時是函數(shù)f(x),g(x)的切線?說明理由.
(3)若直線x=a(a>0)與f(x)、g(x)的圖象分別交于A、B兩點,直線y=b(b>0)與h(x)的圖象有兩個不同的交點C、D.記以A、B、C、D為頂點的凸四邊形面積為S,求證:S>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1+an=4n+4,n∈N*
(1)若a1=1,試求數(shù)列{an}的通項公式;
(2)是否存在a1,使{an}為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(x∈R),滿足f(0)=f(
1
2
)=0,且f(x)的最小值是-
1
8
.設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,Sn)在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)通過bn=
Sn
n+k
構(gòu)造一個新數(shù)列{bn},是否存在非零常數(shù)k,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求f(5)的值;
(2)利用合情推理歸納出f(n+1)與f(n)的關(guān)系,并求f(n)的表達式;
(3)求證:
1
f(1)
+
1
f(2)+3
+
1
f(3)+5
+…+
1
f(n)+2n-1
3n-1
2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=lg|x|的單調(diào)性和奇偶性.

查看答案和解析>>

同步練習冊答案