某校課外興趣小組的學(xué)生為了給學(xué)校邊的一口被污染的池塘治污,他們通過實(shí)驗(yàn)后決定在池塘中投放一種能與水中的污染物質(zhì)發(fā)生化學(xué)反應(yīng)的藥劑.已知每投放個(gè)單位的藥劑,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中若多次投放,則某一時(shí)刻水中的藥劑濃度為各次投放的藥劑在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中藥劑的濃度不低于4(克/升)時(shí),它才能起到有效治污的作用.
(Ⅰ)若一次投放4個(gè)單位的藥劑,則有效治污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次投放2個(gè)單位的藥劑,6天后再投放個(gè)單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求的最小值.

(Ⅰ)有效治污的時(shí)間可達(dá)8天; (Ⅱ)的最小值為1

解析試題分析:(Ⅰ)先由可得在水中釋放的濃度再分別分段求出水中藥劑的濃度不低于4(克/升)時(shí)的天數(shù),從而得出有效治污的時(shí)間可達(dá)8天;  
(Ⅱ)先得出模型當(dāng)時(shí),,然后由基本不等式知,再由,解得,即的最小值為1 .
試題解析:(I)∵  ∴.                  2分
當(dāng)時(shí),由,解得,此時(shí);
當(dāng)時(shí),由,解得,此時(shí).        4分
綜上,得.故若一次投放4個(gè)單位的藥劑,則有效治污的時(shí)間可達(dá)8天.6分
(II)當(dāng)時(shí),,9分
 ,  ,則
當(dāng)且僅當(dāng),即時(shí)取等號(hào).
,解得 ,故所求的最小值為1 .             14分
考點(diǎn):1.函數(shù)模型的應(yīng)用;2.基本不等式的應(yīng)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),兩個(gè)函數(shù),的圖像關(guān)于直線對(duì)稱.
(1)求實(shí)數(shù)滿足的關(guān)系式;
(2)當(dāng)取何值時(shí),函數(shù)有且只有一個(gè)零點(diǎn);
(3)當(dāng)時(shí),在上解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在不考慮空氣阻力的情況下,火箭的最大速度(單位:)和燃料的質(zhì)量(單位:),火箭(除燃料外)的質(zhì)量(單位:)滿足.(為自然對(duì)數(shù)的底)
(Ⅰ)當(dāng)燃料質(zhì)量為火箭(除燃料外)質(zhì)量兩倍時(shí),求火箭的最大速度(單位:);
(Ⅱ)當(dāng)燃料質(zhì)量為火箭(除燃料外)質(zhì)量多少倍時(shí),火箭的最大速度可以達(dá)到8.(結(jié)果精確到個(gè)位,數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(I)解不等式;
(II)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)計(jì)算:
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是某重點(diǎn)中學(xué)學(xué)校運(yùn)動(dòng)場(chǎng)平面圖,運(yùn)動(dòng)場(chǎng)總面積15000平方米,運(yùn)動(dòng)場(chǎng)是由一個(gè)矩形和分別以、為直徑的兩個(gè)半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價(jià)為150元,其它部分造價(jià)每平方米80元,

(Ⅰ)設(shè)半圓的半徑(米),寫出塑膠跑道面積的函數(shù)關(guān)系式;
(Ⅱ)由于受運(yùn)動(dòng)場(chǎng)兩側(cè)看臺(tái)限制,的范圍為,問當(dāng)為何值時(shí),運(yùn)動(dòng)場(chǎng)造價(jià)最低(第2問取3近似計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題p:關(guān)于x的不等式,對(duì)一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)不等式的解集為M,求當(dāng)x∈M時(shí)函數(shù)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)若的定義域是,求實(shí)數(shù)的取值范圍及的值域;
(2)若的值域是,求實(shí)數(shù)的取值范圍及的定義域

查看答案和解析>>

同步練習(xí)冊(cè)答案