19.如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F2x軸上,長軸A1A2的長為4,左準(zhǔn)線lx軸的交點(diǎn)為M,|MA1|∶|A1F1|=2∶1.

    (Ⅰ)求橢圓的方程;

    (Ⅱ)若點(diǎn)Pl上的動(dòng)點(diǎn),求∠F1PF2最大值.

19.本題主要考查橢圓的幾何性質(zhì)、橢圓方程、兩條直線的夾角等基礎(chǔ)知識(shí),考查解析幾何的基本思想方法和綜合解題能力。

解:(Ⅰ)設(shè)橢圓方程為。ab>0),半焦距為c,則

|MA1|=a,|A1F1|=ac,

解得a=2,b=,c=1.

故橢圓方程為.

(Ⅱ)設(shè)P(-4,y0),y0≠0,

則直線PF1的斜率k1=-,直線PF2的斜率k2=-.

∵0<∠F1PF2<∠PF1M<.

∴∠F1PF2為銳角。

∴tan∠F1PF2=||=

            ≤

當(dāng)|y0|=,即y0時(shí),

tan∠F1PF2取到最大值,此時(shí)∠F1PF2基大,

故∠F1PF2的最大值為arctan.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點(diǎn)為M,|MA1|:|A1F1|=2:1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l1:x=m(|m|>1),P為l1上的動(dòng)點(diǎn),使∠F1PF2最大的點(diǎn)P記為Q,求點(diǎn)Q的坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)|AB|=
12
5
2
時(shí),求m的值;
(3)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)為A(0,
2
),且離心率為
3
2

( I)求橢圓的標(biāo)準(zhǔn)方程;
( II)過點(diǎn)M(0,2)的直線l與橢圓相交于不同兩點(diǎn)P、Q,點(diǎn)N在線段PQ上.設(shè)
|
MP
|
|
PN
|
=
|
MQ
|
|
NQ
|
=λ,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A、B兩個(gè)不同點(diǎn)(A、B與M不重合).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)MA⊥MB時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案