已知定義域為的函數(shù)滿足,的導函數(shù),則不等式的解集為_______.

試題分析:記函數(shù),則,∵,∴都成立,∴函數(shù)h(x)在R上單調(diào)遞減,又,∴,∴x>1,故不等式的解集為
點評:對于抽象函數(shù)不等式往往利用函數(shù)的單調(diào)性處理,在判斷單調(diào)性時,一般利用導數(shù)法判斷
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設a為實數(shù), 函數(shù) 
(Ⅰ)求的極值.
(Ⅱ)當a在什么范圍內(nèi)取值時,曲線軸僅有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù)
(I)若曲線在點處的切線與直線垂直,求a的值;
(II)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)處的導數(shù)的幾何意義是
A.在點處的斜率
B.在點處的切線與軸所夾銳角的正切值
C.在點與點(0,0)連線的斜率;
D.曲線在點處切線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),,設
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)圖像上任意一點為切點的切線的斜率恒成立,求實數(shù)的最小值;
(Ⅲ)是否存在實數(shù)m,使得函數(shù)的圖像與函數(shù)的圖像恰有四個不同的交點?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線處的切線與直線ax+2y+1=0互相垂直,則實數(shù)a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知.當時,等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A、B、C三點在曲線y=上,其橫坐標依次為0,m,4(0<m<4),當△ABC的面積最大時,折線ABC與曲線y=所圍成的封閉圖形的面積為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是曲線上的動點,曲線在點處的切線與軸分別交于兩點,點是坐標原點.給出三個結(jié)論:①;②△的周長有最小值;③曲線上存在兩點,使得△為等腰直角三角形.其中正確結(jié)論的個數(shù)是
A.1B.2C.3D.0

查看答案和解析>>

同步練習冊答案