分析 (Ⅰ)將a的值帶入f(x),求出f(x)的解析式,從而求出f(x)的單調(diào)區(qū)間即可;(Ⅱ)通過(guò)討論x的范圍,去掉絕對(duì)值號(hào),分離參數(shù)a,從而求出a的范圍即可.
解答 解:(Ⅰ)當(dāng)$a=\frac{1}{2}$時(shí),$f(x)=\left\{\begin{array}{l}\frac{3}{2x}-\frac{x}{2},x∈({-1,0})∪[{1,+∞})\\ \frac{3x}{2}-\frac{1}{2x},x∈({0,1})∪({-∞,-1}]\end{array}\right.$….(2分)
所以f(x)的單調(diào)遞增區(qū)間是(0,1],(-∞,-1],
單調(diào)遞減區(qū)間是[1,+∞),[-1,0)….(6分)
(Ⅱ)由$f(x)≥\frac{1}{2}x$得$a(x+\frac{1}{x})-|{x-\frac{1}{x}}|≥\frac{1}{2}x$,
∴$a({x^2}+1)-|{{x^2}-1}|≥\frac{1}{2}{x^2}$
①當(dāng)0<x<1時(shí),$a({x^2}+1)+{x^2}-1≥\frac{1}{2}{x^2}$,
∴$a≥\frac{{1-\frac{1}{2}{x^2}}}{{{x^2}+1}}$…(8分)
∵$\frac{{1-\frac{1}{2}{x^2}}}{{{x^2}+1}}=\frac{3}{{2({x^2}+1)}}-\frac{1}{2}∈({\frac{1}{4},1})$∴a≥1…(10分)
②當(dāng)x>1時(shí),$a({x^2}+1)-{x^2}+1≥\frac{1}{2}{x^2}$,
∴$a≥\frac{{\frac{3}{2}{x^2}-1}}{{{x^2}+1}}$…(12分)
∵$\frac{{\frac{3}{2}{x^2}-1}}{{{x^2}+1}}=\frac{3}{2}-\frac{5}{{2({x^2}+1)}}∈[\frac{1}{4},\frac{3}{2})$,
∴$a≥\frac{3}{2}$….…(14分)
綜上所述,a的取值范圍是$[\frac{3}{2},+∞)$.…(15分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)+g(x)是偶函數(shù) | B. | f(x)•g(x)是偶函數(shù) | C. | f(x)+g(x)是奇函數(shù) | D. | f(x)•g(x)是奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | [-1,+∞) | C. | (-1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p、q中至少一個(gè)有一個(gè)為真命題 | B. | p、q均為假命題 | ||
C. | p、q均為真命題 | D. | p、q中至多一個(gè)有一個(gè)為真命題 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com