精英家教網 > 高中數學 > 題目詳情
四棱錐P-ABCD的三視圖如圖所示,四棱錐P-ABCD的五個頂點都在一個球面上,E、F分別是棱AB、CD的中點,直線EF被球面所截得的線段長為2
2
,則該球表面積為(  )
分析:將三視圖還原為直觀圖,得四棱錐P-ABCD的五個頂點位于同一個正方體的頂點處,且與該正方體內接于同一個球.由此結合題意,可得正文體的棱長為2,算出外接球半徑R,再結合球的表面積公式,即可得到該球表面積.
解答:解:將三視圖還原為直觀圖如右圖,可得四棱錐P-ABCD的五個頂點位于同一個正方體的頂點處,
且與該正方體內接于同一個球.且該正方體的棱長為a
設外接球的球心為O,則O也是正方體的中心,設EF中點為G,連接OG,OA,AG
根據題意,直線EF被球面所截得的線段長為2
2
,即正方體面對角線長也是2
2

∴得AG=
2
=
2
2
a,所以正方體棱長a=2
∴Rt△OGA中,OG=
1
2
a=1,AO=
3
,
即外接球半徑R=
3
,得外接球表面積為4πR2=12π.
故選A.
點評:本題主要考查了將三視圖還原為直觀圖,并且求外接球的表面積,著重考查了正方體的性質、三視圖和球內接多面體等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,四棱錐P-ABCD的底面是邊長為1的正方形,側棱PA⊥底面ABCD,且PA=2,E是PA的中點.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證:PC∥平面BDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側棱PA⊥底面ABCD,側面PBC內有BE⊥PC于E,且BE=
6
3
a,試在AB上找一點F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,ABCD是正方形,O是該正方形的中心,P是平面ABCD外一點,PO⊥底面ABCD,E是PC的中點.求證:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱錐P-ABCD的全面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

正四棱錐P-ABCD的高為PO,若Q為CD中點,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
則x+y=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知四棱錐P-ABCD的三視圖如圖所示,則這個四棱錐的體積為( 。
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步練習冊答案