【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的普通方程和的直角坐標方程;

2)過點作傾斜角為的直線兩點,過作與平行的直線點,若,求

【答案】1的普通方程為;的直角方程為 2

【解析】

1)根據(jù)加減消元得曲線的普通方程,根據(jù)的直角坐標方程;

2)先寫出直線,參數(shù)方程,代入,,再根據(jù)參數(shù)幾何意義化簡條件解得結果.

1)①:∵為參數(shù)),∴,

又∵

∴曲線的普通方程為;

②∵,∴,又∵,

,即

∴曲線的直角方程為;

2)由題意,設為參數(shù)),為參數(shù)),

依題意,,

聯(lián)立得,

聯(lián)立得,

設點對應的參數(shù)分別為,則

,

,得

,即,故,又∵,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】造紙術是我國古代四大發(fā)明之一,紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標準,規(guī)定以、、;、、、等標記來表示紙張的幅面規(guī)格.復印紙幅面規(guī)格只采用系列和系列,共中系列的幅面規(guī)格為:①規(guī)格的紙張的幅寬(表示)和長度(表示)的比例關系為;②將紙張沿長度方向對開成兩等分,便成為規(guī)格,紙張沿長度方向對開成兩等分,便成為規(guī)格,,如此對開至規(guī)格.現(xiàn)有、、、、紙各一張.若紙的面積為.則這9張紙的面積之和等于__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著國家綜合國力的提升和科技的進步,截至年底,中國鐵路運營里程達萬千米,這個數(shù)字比年增長了倍;高鐵運營里程突破萬千米,占世界高鐵運營里程的以上,居世界第一位.如表截取了年中國高鐵密度的發(fā)展情況(單位:千米/萬平方千米).

年份

年份代碼

高鐵密度

已知高鐵密度與年份代碼之間滿足關系式為大于的常數(shù)).

1)根據(jù)所給數(shù)據(jù),求關于的回歸方程(精確到位);

2)利用(1)的結論,預測到哪一年,高鐵密度會超過千米/萬平方千米.

參考公式:設具有線性相關系的兩個變量的一組數(shù)據(jù)為,則回歸方程的系數(shù):,

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,,是某景區(qū)的兩條道路(寬度忽略不計,為東西方向),Q為景區(qū)內(nèi)一景點,A為道路上一游客休息區(qū),已知(百米),Q到直線,的距離分別為3(百米),(百米),現(xiàn)新修一條自A經(jīng)過Q的有軌觀光直路并延伸至道路于點B,并在B處修建一游客休息區(qū).

1)求有軌觀光直路的長;

2)已知在景點Q的正北方6百米的P處有一大型組合音樂噴泉,噴泉表演一次的時長為9分鐘,表演時,噴泉噴灑區(qū)域以P為圓心,r為半徑變化,且t分鐘時,(百米)(,.當噴泉表演開始時,一觀光車S(大小忽略不計)正從休息區(qū)B沿(1)中的軌道(百米/分鐘)的速度開往休息區(qū)A,問:觀光車在行駛途中是否會被噴泉噴灑到,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C)的上頂點為,離心率為.

1)求橢圓C的方程;

2)若過點A作圓(圓在橢圓C內(nèi))的兩條切線分別與橢圓C相交于B,D兩點(B,D不同于點A),當r變化時,試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其焦點下的距離為10.

(1)求拋物線C的方程;

(2)設過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為.

(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.

(2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.

①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元。若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?

②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.

查看答案和解析>>

同步練習冊答案