橢圓的焦點(diǎn)為F1和F2 ,點(diǎn)P在橢圓上,如果線(xiàn)段PF1的中點(diǎn)在y軸上,那么︱PF1︱是︱PF2

A.3倍       B.4倍      C.5倍      D.7倍

 

【答案】

D

【解析】

試題分析:由題設(shè)知F1(-3,0),F(xiàn)2(3,0),由線(xiàn)段PF1的中點(diǎn)在y軸上,設(shè)P(3, y),把P(3,b)代入橢圓,得y2=.再由兩點(diǎn)間距離公式分別求出|P F1|=和|P F2|=,由此得到|P F1|是|P F2|的倍數(shù)為7,故選D.

考點(diǎn):本試題主要考查了橢圓的基本性質(zhì)和應(yīng)用,解題時(shí)要注意兩點(diǎn)間距離公式的合理運(yùn)用.

點(diǎn)評(píng):解決該試題的關(guān)鍵是能結(jié)合橢圓的定義以及相似三角形中位線(xiàn)的性質(zhì)得到線(xiàn)段的比值來(lái)解決。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱(chēng)△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似三角形,則稱(chēng)這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以?huà)佄锞(xiàn)y2=4
3
x
的焦點(diǎn)為一個(gè)焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線(xiàn)y=nx與拋物線(xiàn)x2=
1
mn
y
異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線(xiàn)4x2-4y2=1上.
(3)已知直線(xiàn)l:y=x+1,與橢圓C1相似且短半軸長(zhǎng)為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線(xiàn)l上,B,D在曲線(xiàn)Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
α 2
+
y 2
α2-1
=1(a>1)
的左右焦點(diǎn)為F1,F(xiàn)2,拋物線(xiàn)C:y2=2px以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M,直線(xiàn)F1M與拋物線(xiàn)C相切.
(Ⅰ)求拋物線(xiàn)C的方程和點(diǎn)M的坐標(biāo);
(Ⅱ)過(guò)F2作拋物線(xiàn)C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點(diǎn)分別為F、N,求證直線(xiàn)FN恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京大學(xué)附中高考數(shù)學(xué)考前猜題試卷(解析版) 題型:解答題

如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱(chēng)△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且半短軸長(zhǎng)為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
(3)已知直線(xiàn)l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線(xiàn)l對(duì)稱(chēng),若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城一中(東校區(qū))高三一輪復(fù)習(xí)綜合檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知半橢圓與半橢圓組成的曲線(xiàn)稱(chēng)為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
(1)若三角形FF1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線(xiàn)與果圓交于兩點(diǎn),兩點(diǎn)的連線(xiàn)段稱(chēng)為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線(xiàn)交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知半橢圓與半橢圓組成的曲線(xiàn)稱(chēng)為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
(1)若三角形FF1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線(xiàn)與果圓交于兩點(diǎn),兩點(diǎn)的連線(xiàn)段稱(chēng)為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線(xiàn)交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案