【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點對應(yīng)的參數(shù)為上的動點,求的中點到直線為參數(shù))距離的最小值.

【答案】(1C1:(x+42+y﹣32=1;C2,(2)點Q,

【解析】試題分析:(1)分別消去兩曲線參數(shù)方程中的參數(shù)得到兩曲線的直角坐標(biāo)方程,即可得到曲線表示一個圓;曲線表示一個橢圓;(2)把的值代入曲線的參數(shù)方程得點的坐標(biāo),然后把直線的參數(shù)方程化為普通方程,根據(jù)曲線的參數(shù)方程設(shè)出的坐標(biāo),利用中點坐標(biāo)公式表示出的坐標(biāo),利用點到直線的距離公式標(biāo)準處到已知直線的距離,利用兩角差的正弦函數(shù)公式化簡后,利用正弦函數(shù)的值域即可得到距離的最小值.

試題解析:(1

為圓心是,半徑是1的圓, 為中心是坐標(biāo)原點,焦點在軸,長半軸長是8,短半軸長是3的橢圓.

2)當(dāng)時, ,故

的普通方程為, 的距離

所以當(dāng)時, 取得最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將5名報名參加運動會的同學(xué)分別安排到跳繩、接力,投籃三項比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2+2x+3).

(1)若f(1)=1,求f(x)的單調(diào)區(qū)間;

(2)是否存在實數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=﹣ex+ex(e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的最大值;
(2)設(shè)g(x)=lnx+ x2+ax,若對任意x1∈(0,2],總存在x2∈(0,2].使得g(x1)<f(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,g(x)=ex﹣ax,其中a為正實數(shù),若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了制定治理學(xué)校門口上學(xué)、放學(xué)期間家長接送孩子亂停車現(xiàn)象的措施,對全校學(xué)生家長進行了問卷調(diào)查.根據(jù)從中隨機抽取的50份調(diào)查問卷,得到了如下的列聯(lián)表:

同意限定區(qū)域停車

不同意限定區(qū)域停車

合計

20

5

25

10

15

25

合計

30

20

50

則認為“是否同意限定區(qū)域停產(chǎn)與家長的性別有關(guān)”的把握約為__________

附:,其中.

0.050

0.005

0.001

3.841

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;

②對于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越小;

③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點;

是用來判斷兩個分類變量是否有關(guān)系的隨機變量,只對于兩個分類變量適合;

以上幾種說法正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購物抽獎活動中,假設(shè)某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:

(1)該顧客中獎的概率;

(2)該顧客獲得的獎品總價值X(元)的概率分布列和期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=2cos2xcos2x).

1)求fx)的周期和最大值;

2)已知△ABC中,角A.B.C的對邊分別為AB,C,若fπA)=b+c2,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案