14.若方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦點(diǎn)在y軸上的橢圓,則k的取值范圍是( 。
A.k<1或k>9B.1<k<9C.1<k<9且k≠5D.5<k<9

分析 方程表示焦點(diǎn)在y軸的橢圓,可得x2、y2的分母均為正數(shù),且y2的分母較大,由此建立關(guān)于k的不等式,解之即得k的取值范圍.

解答 解:∵方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦點(diǎn)在y軸上的橢圓,
∴k-1>9-k>0,
∴5<k<9.
故選:D.

點(diǎn)評(píng) 本題給出橢圓的焦點(diǎn)在y軸上,求參數(shù)k的范圍,著重考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單性質(zhì)等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.有以下兩個(gè)推理過(guò)程:
(1)在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.相應(yīng)地,在等比數(shù)列{bn}中,若b10=1,則有等式b1b2…bn=b1b2…b19-n(n<19,n∈N*);
(2)由1=12,1+3=22,1+3+5=32,1+3+5+…+(2n-1)=n2
則(1)(2)兩個(gè)推理過(guò)程分別屬于( 。
A.歸納推理、演繹推理B.類(lèi)比推理、演繹推理
C.歸納推理、類(lèi)比推理D.類(lèi)比推理、歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{x-1}$-2sinπx(-3≤x≤5)的所有零點(diǎn)之和等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)=xlnx,則點(diǎn)(1,0)處的切線方程是x-y-1=0;函數(shù)f(x)=xlnx的最小值為-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在原命題及其逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)可以是( 。
A.1或2或3或4B.0或2或4C.1或3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.△ABC兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別是(-1,0)、(1,0),邊AC、BC所在直線的斜率之積是-4.
(1)求頂點(diǎn)C的軌跡方程;
(2)求直線2x-y+1=0被此曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=e-x-3x-4在區(qū)間[0,1]上的最小值是$\frac{1}{e}$-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|(x+2)(x-3)<0},則A∩N(N為自然數(shù)集)為( 。
A.(-∞,-2)∪(3,+∞)B.(2,3)C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,已知b=3,A=45°,B=60°,則a=$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案