4.設(shè)a,b,c均為正數(shù),且${2^a}={log_{\frac{1}{2}}}a,\;\;{(\frac{1}{2})^b}={log_{\frac{1}{2}}}b,{(\frac{1}{2})^c}={log_2}$c,則a,b,c由大到小的順序?yàn)閏>b>a.

分析 分別畫出圖象:y=2x,$y=(\frac{1}{2})^{x}$,y=$lo{g}_{\frac{1}{2}}x$.可得:0<a<b<1.$(\frac{1}{2})^{c}$=log2c>0,可得c>1.即可得出.

解答 解:∵${2}^{a}=lo{g}_{\frac{1}{2}}a$>0,∴1>a>0;
$(\frac{1}{2})^$=$lo{g}_{\frac{1}{2}}b$>0,1>b>0;
分別畫出圖象:y=2x,$y=(\frac{1}{2})^{x}$,y=$lo{g}_{\frac{1}{2}}x$.
可得:0<a<b<1.
$(\frac{1}{2})^{c}$=log2c>0,∴c>1.
則a,b,c由大到小的順序?yàn)閏>b>a.
故答案為:c>b>a.

點(diǎn)評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(sinωx+$\sqrt{3}$cosωx,1),$\overrightarrow{n}$=(2cosωx,-$\sqrt{3}$)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的兩條相鄰對稱軸間的距離為$\frac{π}{2}$,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(文)已知△ABC中,cosA=a,sinB=$\frac{4}{5}$,當(dāng)a滿足條件0時,cosC具有唯一確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)y=f(x)的定義域?yàn)镽,則“f(0)=0”是“函數(shù)f(x)為奇函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,f(x)與g(x)表示同一個函數(shù)的是(  )
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=x,g(x)=\root{3}{x^3}$
C.f(x)=x,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直角坐標(biāo)系中,點(diǎn)$(1,-\sqrt{3})$的極坐標(biāo)可以是( 。
A.$(2,\frac{4π}{3})$B.$(2,\frac{5π}{3})$C.$(2,\frac{5π}{6})$D.$(2,\frac{11π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函數(shù),且函數(shù)$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上為增函數(shù),則m的取值范圍是$\frac{1}{2}$<m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=log${\;}_{\frac{1}{2}}$x,x∈[1,+∞),則y的取值范圍(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.判斷下列函數(shù)的奇偶性:
(1)f(x)=-2cos3x.
(2)f(x)=xsin(x+π).

查看答案和解析>>

同步練習(xí)冊答案