【題目】關(guān)于曲線,有如下結(jié)論:
①曲線關(guān)于原點(diǎn)對(duì)稱;
②曲線關(guān)于坐標(biāo)軸對(duì)稱;
③曲線是封閉圖形;
④曲線不是封閉圖形,且它與圓無(wú)公共點(diǎn);
⑤曲線與曲線有個(gè)交點(diǎn),這點(diǎn)構(gòu)成正方形.其中有正確結(jié)論的序號(hào)為__________.
【答案】①②④⑤
【解析】
根據(jù)點(diǎn)關(guān)于點(diǎn)對(duì)稱及點(diǎn)關(guān)于坐標(biāo)軸對(duì)稱的性質(zhì)判斷,聯(lián)立方程構(gòu)造方程組,判斷方程的解的情況,即可判斷有無(wú)交點(diǎn)。
對(duì)于①,將方程中的換成,換成方程不變,故①正確;
對(duì)于②,將方程中的換成或換成方程不變,故②正確;
對(duì)于③,由方程得,,故曲線不是封閉圖形,故③錯(cuò)誤;
對(duì)于④,聯(lián)立曲線與方程組無(wú)解,無(wú)公共點(diǎn),故④正確;
對(duì)于⑤,當(dāng),時(shí),聯(lián)立曲線與只有一解根據(jù)對(duì)稱性,共有4個(gè)交點(diǎn),這點(diǎn)構(gòu)成正方形,故⑤正確。
故答案為:①②④⑤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年2月13日《西安市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?(精確到0.1)
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過(guò)8.5小時(shí) | |
理工類專業(yè) | 40 | 60 |
非理工類專業(yè) |
附:().
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}.
(1)若“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任意x∈B,不等式x2-mx+4≥0都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}中,a2=-8,a6=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺(tái),記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長(zhǎng),并求觀景路線A-C-B長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義,兩點(diǎn)間的“直角距離”為:.
(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)求到兩定點(diǎn)、的“直角距離”和為定值的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.(在以下三個(gè)條件中任選一個(gè)做答)
①,,;
②,,;
③,,.
(3)寫出同時(shí)滿足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
①到,兩點(diǎn)“直角距離”相等;
②到,兩點(diǎn)“直角距離”和最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的1200名學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率。(分及以上為及格)
(3)若準(zhǔn)備取成績(jī)最好的300名發(fā)獎(jiǎng),則獲獎(jiǎng)的最低分?jǐn)?shù)約為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著我國(guó)汽車消費(fèi)水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場(chǎng)對(duì)2017年成交的二手車交易前的使用時(shí)間(以下簡(jiǎn)稱“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.
圖1 圖2
(1)記“在年成交的二手車中隨機(jī)選取一輛,該車的使用年限在”為事件,試估計(jì)的概率;
(2)根據(jù)該汽車交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖2,其中(單位:年)表示二手車的使用時(shí)間,(單位:萬(wàn)元)表示相應(yīng)的二手車的平均交易價(jià)格.由散點(diǎn)圖看出,可采用作為二手車平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;
②該汽車交易市場(chǎng)對(duì)使用8年以內(nèi)(含8年)的二手車收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含8年)的二手車收取成交價(jià)格的傭金.在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車交易市場(chǎng)對(duì)成交的每輛車收取的平均傭金.
附注:①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為;
②參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個(gè)1,個(gè)2,,個(gè)n.證明:并確定使等號(hào)成立的條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com