某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.

(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)

(1)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);

(2)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

 

【答案】

(1)y=-+36001≤x≤40)

(2)該廠的日產(chǎn)量為30件時,日利潤最大,其最大值為72000元

【解析】

試題分析:(1) =3600

∴所求的函數(shù)關(guān)系是y=-+36001≤x≤40)

(2)顯然令y′=0,解得x=30.

∴函數(shù)y=-+3600x(x∈N*,1≤x≤40)在上是單調(diào)遞增函數(shù),

上是單調(diào)遞減函數(shù).

∴當(dāng)x=30時,函數(shù)y=-+3600x(x∈N*,1≤x≤40)取最大值,

最大值為-×303+3600×30=72000(元).

∴該廠的日產(chǎn)量為30件時,日利潤最大,其最大值為72000元

考點:本題主要考查函數(shù)模型,導(dǎo)數(shù)的應(yīng)用。

點評:典型題,通過構(gòu)建函數(shù)模型利用導(dǎo)數(shù)加以解決,這是近些年來高考考查的重要題型之一。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日和生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為P=
4200-x24500
,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%).
(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)

(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);

 (Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧省丹東市高二上學(xué)期期末考試文數(shù)試卷(解析版) 題型:解答題

(本小題滿分12分) 某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為P,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%).

(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);

(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三10月階段性測試文科數(shù)學(xué)試卷 題型:解答題

(14分)某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)

(Ⅰ)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);

(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值

 

查看答案和解析>>

同步練習(xí)冊答案