已知在數(shù)列{}中,
(1)求證:數(shù)列{}是等比數(shù)列,并求出數(shù)列{}的通項公式;
(2)設數(shù)列{}的前竹項和為Sn,求Sn.
(1)詳見解析;(2)
解析試題分析:(1)要證明數(shù)列是等比數(shù)列,只需證明(常數(shù)),根據(jù)已知條件,將,代入整理,易得常數(shù),首項,所以數(shù)列,從而解出的通項公式;
(2), 所以數(shù)列{}的前項的和分別是一個等比數(shù)列加一個常數(shù)列的和,等比數(shù)列是首項為2,公比為4的等比數(shù)列,常數(shù)列的前項的和為,兩和相加即為最后結果.
(1),
所以數(shù)列是以2為首項,以4為公比的等比數(shù)列, 4分
則; 所以 6分
(2). 12分
考點:1.等比數(shù)列的定義;2.等式數(shù)列的前項和.
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列的前項和為,已知(,為常數(shù)),,,(1)求數(shù)列的通項公式;(2)求所有滿足等式成立的正整數(shù),.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,,.
(1)求,的值;
(2)求證:是等比數(shù)列,并求的通項公式;
(3)數(shù)列滿足,數(shù)列的前n項和為,若不等式對一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)(2011•天津)已知數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設cn=a2n+1﹣a2n﹣1,n∈N*,證明{cn}是等比數(shù)列
(Ⅲ)設Sn為{an}的前n項和,證明++…++≤n﹣(n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2014·隨州模擬)已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項公式.
(2)設數(shù)列{an}的前n項和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com