若橢圓的兩個(gè)焦點(diǎn)為F1(-4,0)、F2(4,0),橢圓的弦AB過(guò)點(diǎn)F1,且△ABF2的周長(zhǎng)為20,那么該橢圓的方程為_(kāi)_________.
+=1
ABF2的周長(zhǎng):|AF2|+|AF1|+|BF2|+|BF1|=2a+2a=4a=20,
a=5.又∵c=4,∴b=3.
∴橢圓的方程為+=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,已知B(-2,0)、C(2,0),ADBC于點(diǎn)D,△ABC的垂心為H,且=.

(1)求點(diǎn)H(x,y)的軌跡G的方程;
(2)已知P(-1,0)、Q(1,0),M是曲線G上的一點(diǎn),那么,,能成等差數(shù)列嗎?若能,求出M點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓+=1(ab>0)的左焦點(diǎn)為F1(-2,0),左準(zhǔn)線l1x軸交于點(diǎn)N(-3,0),過(guò)點(diǎn)N且傾斜角為30°的直線l交橢圓于A、B兩點(diǎn).
(1)求直線l和橢圓的方程;
(2)求證:點(diǎn)F1(-2,0)在以線段AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題






(Ⅰ)設(shè)橢圓上的點(diǎn)到兩點(diǎn)、距離之和等于,寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;
(Ⅲ)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),過(guò)原點(diǎn)的直線與橢圓相交于,兩點(diǎn),當(dāng)直線 , 的斜率都存在,并記為 ,試探究的值是否與點(diǎn)及直線有關(guān),不必證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:),其離心率為,兩準(zhǔn)線之間的距離為。(1)求之值;(2)設(shè)點(diǎn)A坐標(biāo)為(6, 0),B為橢圓C上的動(dòng)點(diǎn),以A為直角頂點(diǎn),作等腰直角△ABP(字母A,B,P按順時(shí)針?lè)较蚺帕校,求P點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)在圓上移動(dòng),點(diǎn)在橢圓上移動(dòng),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某檢驗(yàn)員通常用一個(gè)直徑為2 cm和一個(gè)直徑為1 cm的標(biāo)準(zhǔn)圓柱,檢測(cè)一個(gè)直徑為3 cm的圓柱,為保證質(zhì)量,有人建議再插入兩個(gè)合適的同號(hào)標(biāo)準(zhǔn)圓柱,問(wèn)這兩個(gè)標(biāo)準(zhǔn)圓柱的直徑為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),若,證明:的面積只與橢圓的短軸長(zhǎng)有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的焦點(diǎn),是橢圓上一點(diǎn),且的等差中項(xiàng),則橢圓的標(biāo)準(zhǔn)方程是(     ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案