已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),直線(xiàn)l1:x=-1,l2:x+y+3=0,則P到直線(xiàn)l1、l2的距離之和的最小值為


  1. A.
    2數(shù)學(xué)公式
  2. B.
    4
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式+1
A
分析:將P點(diǎn)到直線(xiàn)l1:x=-1的距離轉(zhuǎn)化為P到焦點(diǎn)F(1,0)的距離,過(guò)點(diǎn)F作直線(xiàn)l2垂線(xiàn),交拋物線(xiàn)于點(diǎn)P,此即為所求最小值點(diǎn),由此能求出P到兩直線(xiàn)的距離之和的最小值.
解答:將P點(diǎn)到直線(xiàn)l1:x=-1的距離轉(zhuǎn)化為P到焦點(diǎn)F(1,0)的距離,
過(guò)點(diǎn)F作直線(xiàn)l2垂線(xiàn),
交拋物線(xiàn)于點(diǎn)P,
此即為所求最小值點(diǎn),
∴P到兩直線(xiàn)的距離之和的最小值為=2,
故選A.
點(diǎn)評(píng):本題考查直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的準(zhǔn)線(xiàn)距離之和的最小值是( 。
A、2
5
-1
B、2
5
-2
C、
17
-1
D、
17
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4(x-1)上動(dòng)點(diǎn),PA⊥y軸交y于A,點(diǎn)B在y軸上,且B點(diǎn)分向量
OA
的比為1:2,求BP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x的焦點(diǎn),過(guò)P的直線(xiàn)l與拋物線(xiàn)交與A、B兩點(diǎn),若點(diǎn)Q在直線(xiàn)l上,且滿(mǎn)足AP•QB=AQ•PB,則點(diǎn)Q總在定直線(xiàn)x=-1上.試猜測(cè)如果點(diǎn)P為橢圓
x2
16
+
y2
9
=1
的左焦點(diǎn),過(guò)P的直線(xiàn)l與橢圓交與A、B兩點(diǎn),點(diǎn)Q在直線(xiàn)l上,且滿(mǎn)足AP•QB=AQ•PB,則點(diǎn)Q總在定直線(xiàn)
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的準(zhǔn)線(xiàn)距離之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=2x上任一點(diǎn),則P到直線(xiàn)x-y+5=0距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案