已知f(x)=ax5+bx3+cx+1,且f(2012)=3,則f(-2012)=________.

-1
分析:由于x=2012時,ax5+bx3+cx+1=3,把x=2012代入ax5+bx3+cx+2=8中,可以解得20125a+20123b+2012c的值,然后把x=-2012代入所求代數(shù)式,整體可求
解答:∵f(2012)=a×20125+b20123+2012c+1=3
∴a×20125+b20123+2012c=2
∴f(-2012)=a×(-2012)5+b×(-2012)3+(-2012c)+1
=-[a×20125+b20123+2012c]+1=-2+1=-1
故答案為:-1
點(diǎn)評:本題考查了求代數(shù)式的值,解題的關(guān)鍵是利用“整體代入法”求代數(shù)式的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax5-bx3+c(a>0)在x=±1處有極值,且極大值為4,極小值為0,試確定a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知f(x)=ax5+bx3+cx+5(a,b,c是常數(shù)),且f(5)=9,則f(-5)的值為
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax5+bx3+cx-8,且f(-2)=10,那么f(2)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax5+bx3+cx+2,若f(2)=5,則f(-2)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax5+bx3+cx-8,且f(-2)=20,則f(2)=
 

查看答案和解析>>

同步練習(xí)冊答案