設n∈{-1,,1,2,3},則使得f(x)=xn為奇函數(shù),且在(0,+∞)上單調遞減的n的個數(shù)是  
[     ]
A.1      
B.2      
C.3      
D.4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•上海)設n階方陣
An=
1          3           5         …    2n-1
2n+1  2n+3  2n+5  …  4n-1
4n+1  4n+3  4n+5  …  6n-1
…        …         …            …       …
2n(n-1)+1  2n(n-1)+3  2n(n-1)+5  …  2n2-1

任取An中的一個元素,記為x1;劃去x1所在的行和列,將剩下的元素按原來的位置關系組成n-1階方陣An-1,任取An-1中的一個元素,記為x2;劃去x2所在的行和列,…;將最后剩下的一個元素記為xn,記Sn=x1+x2+…+xn,則Sn=x1+x2+…+xn,則
lim
n→∞
Sn
n3+1
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•崇明縣一模)設函數(shù)fn(x)=xn+bx+c(n∈N*,b,c∈R)
(1)當n=2,b=1,c=-1時,求函數(shù)fn(x)在區(qū)間(
1
2
,1)
內(nèi)的零點;
(2)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
1
2
,1)
內(nèi)存在唯一的零點;
(3)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•許昌二模)設Xn={1,2,3…n}(n∈N*),對Xn的任意非空子集A,定義f(A)為A中的最大元素,當A取遍Xn的所有非空子集時,對應的f(A)的和為Sn,則Sn=
(n-1)2n+1
(n-1)2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n是自然數(shù),fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求證:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用數(shù)學歸納法證明:
fn(x)=
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶數(shù))
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n為奇數(shù))
 
 
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設n是自然數(shù),fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求證:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用數(shù)學歸納法證明:
fn(x)=
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶數(shù))
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n為奇數(shù))
   

查看答案和解析>>

同步練習冊答案