精英家教網 > 高中數學 > 題目詳情

【題目】若集合A={x|x+m≥0},B={x|﹣2<x<4},全集∪=R,且(UA)∩B=,則m的取值范圍是(
A.(﹣∞,2)
B.[2,+∞)
C.(2,+∞)
D.(﹣∞,2]

【答案】B
【解析】解:由A中不等式解得:x≥﹣m,即A=[﹣m,+∞),
∵B=(﹣2,4),全集∪=R,且(UA)∩B=,
UA=(﹣∞,﹣m),
∴﹣m≤﹣2,即m≥2,
則m的取值范圍是[2,+∞),
故選:B.
【考點精析】掌握交、并、補集的混合運算是解答本題的根本,需要知道求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設集合M={x|x2﹣5x﹣6>0},U=R,則UM=(
A.[2,3]
B.(﹣∞,2]∪[3,+∞)
C.[﹣1,6]
D.[﹣6,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合P={x|x2=1},集合Q={x|ax=1},若QP,那么a的值是(
A.1
B.﹣1
C.1或﹣1
D.0,1或﹣1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)為(﹣∞,+∞)上的奇函數,則f(0)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a,b是兩條不同的直線,α,β是兩個不同的平面,則能得出a⊥b的是(
A.a⊥α,b∥β,α⊥β
B.a⊥α,b⊥β,α∥β
C.aα,b⊥β,α∥β
D.aα,b∥β,α⊥β

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】命題甲x+y≠8;命題乙:x≠2或y≠6,則(
A.甲是乙的充分非必要條件
B.甲是乙的必要非充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件,也不是乙的必要條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≤2
(2)若a<0,求證:f(ax)﹣af(x)≥f(2a)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2x﹣3,則f(﹣5)=( )
A.﹣38
B.12
C.17
D.32

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}中,a2=5,a6=33,則a3+a5=

查看答案和解析>>

同步練習冊答案