已知函數(shù)f(x)=-x2-3x-.
(1)求圖象的開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)、與x軸的交點(diǎn)坐標(biāo);
(2)求函數(shù)的單調(diào)區(qū)間、最值和零點(diǎn);
(3)設(shè)圖象與x軸相交于(x1,0)、(x2,0),不求出根,求|x1-x2|;
(4)已知f(-)=,不計(jì)算函數(shù)值,求f(-);
(5)不計(jì)算函數(shù)值,試比較f(-)與f(-)的大;
(6)寫(xiě)出使函數(shù)值為負(fù)數(shù)的自變量x的集合.
思路解析:討論二次函數(shù)的性質(zhì)一般要明確其圖象的開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)、與x軸的交點(diǎn),求頂點(diǎn)可以用配方法,也可以直接用頂點(diǎn)公式(-,),求與x軸的交點(diǎn)可借助配方法或直接使用求根公式x=(b2-4ac≥0).畫(huà)函數(shù)圖象時(shí),一般要標(biāo)注對(duì)稱(chēng)軸、頂點(diǎn)、與x軸的交點(diǎn).下面我們選用配方法解答本題. 解:y=-x2-3x-=-(x2+6x+5) 。剑(x2+6x+9-9+5) =-[(x+3)2-4] 。剑(x+3)2+2. 令y=0,得(x+3)2=4. ∴x1=-5,x2=-1. (1)開(kāi)口向下,對(duì)稱(chēng)軸為直線x=-3,頂點(diǎn)坐標(biāo)為(-3,2),與x軸的交點(diǎn)為(-5,0),(-1,0); (2)單調(diào)增區(qū)間為(-∞,-3),單調(diào)減區(qū)間為(-3,+∞),有最大值為2,無(wú)最小值,零點(diǎn)為-5,-1; (3)x1、x2是方程-x2-3x-=0,即方程x2+6x+5=0的兩個(gè)根,由根與系數(shù)的關(guān)系得x1+x2=-6,x1x2=5. ∴|x1-x2|=; (4)∵對(duì)稱(chēng)軸x=-3, ∴f(-3+x)=f(-3-x). ∴f(-)=f(-3+)=f(-3-)=f(-)=; (5)f(-)=f(-3-)=f(-3+)=f(-), ∵-、-∈(-3,+∞),而f(x)在(-3,+∞)上是減函數(shù),且->-, ∴f(-)<f(-),即f(-)<f(-); (6){x|x<-5或x>-1}. |
討論二次函數(shù)的性質(zhì)一定要結(jié)合二次函數(shù)的圖象,為了方便,通常畫(huà)草圖,有時(shí)可以省去y軸,利用單調(diào)性比較兩個(gè)函數(shù)值的大小,關(guān)鍵是利用對(duì)稱(chēng)性將它們轉(zhuǎn)化到同一單調(diào)區(qū)間上,這里體現(xiàn)了數(shù)形結(jié)合及轉(zhuǎn)化化歸等重要數(shù)學(xué)思想. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿(mǎn)分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對(duì)任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無(wú)實(shí)根,下列命題中:
(1)方程f [f (x)]=x一定無(wú)實(shí)根;
(2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;
(3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;
正確的序號(hào)有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市高三第一次模擬測(cè)試卷理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個(gè)零點(diǎn)x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com