【題目】已知函數(shù)

(1)若是函數(shù)的一個極值點,求的值;

(2)若上恒成立,求的取值范圍;

(3)證明:為自然對數(shù)的底數(shù)).

【答案】(1);(2);(3)見解析

【解析】

1,檢驗。

2)將恒成立轉(zhuǎn)換為最值問題,求最小值大于等于0,根據(jù)函數(shù)的單調(diào)性,通過討論a的范圍求出a的具體范圍。

3)等價變形為利用函數(shù)的單調(diào)性說明。

(1)因為,所以,

因為是函數(shù)的一個極值點,故,即,當(dāng)時,當(dāng)經(jīng)驗得是函數(shù)的一個極值點,所以.

(2)因為上恒成立,所以

當(dāng)時,上恒成立,即上為增函數(shù)

所以成立,即為所求。

當(dāng)時,令,則,令

上為減函數(shù),在上為增函數(shù)。當(dāng)時,,這與矛盾.綜上所述,的取值范圍是。

(3)要證,只需證。兩邊取自然對數(shù)得,,上式等價于,只需要證明,只需要證明,由時,單調(diào)遞增。

,,從而原命題成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

1)計算甲班的樣本方差;

2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)用“10分制”調(diào)查了各階層人士對某次國際馬拉松賽事的滿意度,現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖莖葉圖記錄了他們的滿意度分?jǐn)?shù)以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)若滿意度不低于分,則稱該被調(diào)查者的滿意度為“極滿意”,求從這16人中隨機(jī)選取3人,至少有2人滿意度是“極滿意”的概率;

(3)以這16人的樣本數(shù)據(jù)來估計整個被調(diào)查群體的總體數(shù)據(jù),若從該被調(diào)查群體人數(shù)很多任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF||ABAB=2,BC=EF=1,AE=DE=3,∠BAD=60,GBC的中點.

)求證:FG||平面BED;

)求證:平面BED⊥平面AED;

)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓0,稱圓心在原點,半徑為的圓是橢圓準(zhǔn)圓.若橢圓的一個焦點為,其短軸上的一個端點到的距離為

1)求橢圓的方程和其準(zhǔn)圓方程;

2)點是橢圓準(zhǔn)圓上的一個動點,過點作直線,使得與橢圓都只有一個交點.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的單調(diào)遞減區(qū)間是.

(1)求的解析式;

(2)若對任意的,存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點,已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________

查看答案和解析>>

同步練習(xí)冊答案