函數(shù)g(x)=x|isnx+a|+b(a,b∈R)是奇函數(shù)的充要條件是

[  ]

A.ab=0

B.a+b=0

C.a=b

D.a2+b2=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

已知函數(shù)f(x)=kx+b的圖象與x、y軸分別相交于點A、B,=2i+2j(i、j分別是與x、y軸正半軸同方向的單位向量),函數(shù)g(x)=x2-x-6.

(1)

求k、b的值

(2)

當(dāng)x滿足f(x)>g(x)時,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u、v∈[-1,1],都有|f(u)-f(v)|≤|u-v|

(1)

證明:對任意的x∈[-1,1],都有:

x-1≤f(x)≤1-x

(2)

判斷函數(shù)g(x)=,是否滿足題設(shè)條件

(3)

在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u、v∈[-1,1],都有|f(u)-f(v)|=|u-v|?若存在,請舉一例;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三上學(xué)期四調(diào)考試數(shù)學(xué)文科試題 題型:044

已知a,b是實數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,(x)和(x)是f(x),g(x)的導(dǎo)函數(shù),若(x)(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致

(1)設(shè)a>0,若函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調(diào)性一致,求實數(shù)b的取值范圍;

(2)設(shè)a,b是負實數(shù),若函數(shù)f(x)和g(x)在以a,b為端點的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三第四次調(diào)研考試數(shù)學(xué)文科試題 題型:044

已知a,b是實數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,(x)和(x)是f(x),g(x)的導(dǎo)函數(shù),若(x)(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致

(1)設(shè)a>0,若函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調(diào)性一致,求實數(shù)b的取值范圍;

(2)設(shè)a,b是負實數(shù),若函數(shù)f(x)和g(x)在以a,b為端點的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分14分)已知函數(shù)f (x)=lnx,g(x)=ex

 (I)若函數(shù)φ (x) = f (x)-,求函數(shù)φ (x)的單調(diào)區(qū)間;

 (Ⅱ)設(shè)直線l為函數(shù) y=f (x) 的圖象上一點A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

注:e為自然對數(shù)的底數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案