(97理科)定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合.設(shè)a>b>0,給出下列不等式
①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a),
其中成立的是
(A)①與④ (B)②與③ (C)①與③ (D)②與④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義在區(qū)間(0,)上的函f(x)滿足:(1)f(x)不恒為零;(2)對(duì)任何實(shí)數(shù)x、q,都有.
(1)求證:方程f(x)=0有且只有一個(gè)實(shí)根;
(2)若a>b>c>1,且a、b、c成等差數(shù)列,求證:;
(3)(本小題只理科做)若f(x) 單調(diào)遞增,且m>n>0時(shí),有,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007年高考數(shù)學(xué)綜合模擬試卷(二)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(97理科)定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合.設(shè)a>b>0,給出下列不等式
①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a),
其中成立的是
(A)①與④ (B)②與③ (C)①與③ (D)②與④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com