(本小題滿分13分)

已知橢圓的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.

(1) 求橢圓C的方程;

(2) 若,求直線l的方程.

 

【答案】

(1);(2)。

【解析】

試題分析:(1) 由題意知,,所以,從而

故橢圓C的方程為       5分

(2) 容易驗證直線l的斜率不為0,故可設(shè)直線l的方程為,代入中,

        7分

設(shè)

則由根與系數(shù)的關(guān)系,得

       9分

,

解得m=±2                  11分

所以,直線l的方程為,即 13分

考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線方程。

點評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求橢圓標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求橢圓的標(biāo)準(zhǔn)方程,主要考慮定義、a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問題,往往應(yīng)用韋達(dá)定理。本題應(yīng)用弦長公式,建立了m的方程,進(jìn)一步確定得到直線方程。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習(xí)冊答案