已知a1,a2,a3,…,a10這10個數(shù)的和為45,則當函數(shù)f(x)=
10i=1
(x-ai)2
取得最小值時,此時x的值為
 
分析:將已知函數(shù)f(x)的和展開,整理成一般的二次函數(shù)形式,利用對稱軸公式求出對稱軸,在對稱軸處取得最小值.
解答:解:∵a1+a2+a3+…+a10=45
f(x)=
10
i=1
(x-ai)2
=10x2-2(a1+a2+a3+…+a10)x+
10
i=1
ai2
═10x2-90x+
10
i=1
ai2

對稱軸為x=4.5
∴x=4.5時,函數(shù)取得最小值
故答案為:4.5.
點評:求二次函數(shù)在區(qū)間上的最值問題,一般先求出二次函數(shù)的對稱軸,求出對稱軸處的函數(shù)值及區(qū)間的兩個端點處的函數(shù)值,選出最值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a1>a2>a3>0,則使得(1-aix)2<1(i=1,2,3)都成立的x取值范圍是(  )
A、(0,
1
a1
)
B、(0,
2
a1
)
C、(0,
1
a3
)
D、(0,
2
a3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1,a2,a3,…,a30是首項為1,公比為2的等比數(shù)列.對于滿足0<k<30的整數(shù)k,數(shù)列b1,b2,b3,…,b30bn=
an+k,1≤n≤30-k
an+k-30,30-k<n≤30
確定.記C=a1b1+a2b2+…+a30b30
(Ⅰ)當k=1時,求C的值;
(Ⅱ)求C最小時k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、已知a1,a2,a3為一等差數(shù)列,b1,b2,b3為一等比數(shù)列,
且這6個數(shù)都為實數(shù),則下面四個結(jié)論:
①a1<a2與a2>a3可能同時成立;
②b1<b2與b2>b3可能同時成立;
③若a1+a2<0,則a2+a3<0;
④若b1•b2<0,則b2•b3<0其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10、已知a1,a2,a3,…,a8為各項都大于零的數(shù)列,則“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比數(shù)列”的(  )

查看答案和解析>>

同步練習冊答案