若橢圓的焦點(diǎn)在x軸上,焦距為2,且經(jīng)過(guò),則橢圓的標(biāo)準(zhǔn)方程為   
【答案】分析:先根據(jù)橢圓的焦點(diǎn)位置,求出半焦距,經(jīng)過(guò)的橢圓的長(zhǎng)半軸等于,可求短半軸,從而寫(xiě)出橢圓的標(biāo)準(zhǔn)方程.
解答:解:由題意知,橢圓的焦點(diǎn)在x軸上,c=1,a=
∴b2=4,
故橢圓的方程為為
故答案為:
點(diǎn)評(píng):本題考查橢圓的性質(zhì)及標(biāo)準(zhǔn)方程的求法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程是一種常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的頂點(diǎn)與雙曲線
y2
4
-
x2
12
=1
的焦點(diǎn)重合,它們的離心率之和為
13
5
,若橢圓的焦點(diǎn)在x軸上,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等差數(shù)列,(1)求橢圓的離心率;(2)若橢圓的焦點(diǎn)在x軸上且短軸長(zhǎng)為8,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浦東新區(qū)三模)若橢圓的焦點(diǎn)在x軸上,焦距為2,且經(jīng)過(guò)(
5
,0)
,則橢圓的標(biāo)準(zhǔn)方程為
x2
5
+
y2
4
=1
x2
5
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)版高二數(shù)學(xué)選修1-1圓錐曲線方程專(zhuān)項(xiàng)訓(xùn)練(陜西) 題型:選擇題

若橢圓的焦點(diǎn)在x軸上,且離心率e=,則m的值為(   )

(A)        (B)2           (C)-        (D)±

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(江西卷)解析版 題型:填空題

 若橢圓的焦點(diǎn)在x軸上,過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓方程是          .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案