已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.

(1) 當直線AM的斜率為1時,求點M的坐標;

(2) 當直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.


解:(1) 直線AM的斜率為1時,直線AM為y=x+2,代入橢圓方程并化簡得5x2+16x+12=0,

解之得x1=-2,x2=-

∴ 點M的坐標為.

(2) 設直線AM的斜率為k,則AM為y=k(x+2),

化簡得(1+4k2)x2+16k2x+16k2-4=0.

∵ 此方程有一根為-2,∴ xM,

同理可得xN.

由(1)知若存在定點,則此點必為P.

∵ kMP

同理可計算得kPN.

∴直線MN過x軸上的一定點P.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


 設a,b=(4sinx,cosx-sinx),f(x)=a·b.

(1) 求函數(shù)f(x)的解析式;

(2) 已知常數(shù)ω>0,若y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;

(3) 設集合A=,B={x||f(x)-m|<2},若AB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知雙曲線方程是x2=1,過定點P(2,1)作直線交雙曲線于P1、P2兩點,并使P(2,1)為P1P2的中點,則此直線方程是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.

(1) 若AB=,求k的值;

(2) 求證:不論k取何值,以AB為直徑的圓恒過點M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.

(1) 求橢圓C的方程;

(2) 求△ABP面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).

(1) 當l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;

(2) 當=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.

(1) 求拋物線E的方程;

(2) 設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q.證明:以PQ為直徑的圓恒過y軸上某定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).

(1) 若曲線C是焦點在x軸上的橢圓,求m的取值范圍;

(2) 設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

同步練習冊答案