已知橢圓+y2=1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1) 當(dāng)直線AM的斜率為1時,求點(diǎn)M的坐標(biāo);
(2) 當(dāng)直線AM的斜率變化時,直線MN是否過x軸上的一定點(diǎn)?若過定點(diǎn),請給出證明,并求出該定點(diǎn);若不過定點(diǎn),請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)a=,b=(4sinx,cosx-sinx),f(x)=a·b.
(1) 求函數(shù)f(x)的解析式;
(2) 已知常數(shù)ω>0,若y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;
(3) 設(shè)集合A=,B={x||f(x)-m|<2},若AB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線方程是x2-=1,過定點(diǎn)P(2,1)作直線交雙曲線于P1、P2兩點(diǎn),并使P(2,1)為P1P2的中點(diǎn),則此直線方程是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的離心率為,短軸的一個端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1) 若AB=,求k的值;
(2) 求證:不論k取何值,以AB為直徑的圓恒過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,橢圓C:+=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
(1) 求橢圓C的方程;
(2) 求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=2px(p≠0)及定點(diǎn)A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點(diǎn).設(shè)直線AM、BM與拋物線的另一個交點(diǎn)分別為M1、M2,當(dāng)M變動時,直線M1M2恒過一個定點(diǎn),此定點(diǎn)坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C的方程為+=1(a>b>0),雙曲線-=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個交點(diǎn)由上至下依次為A、B(如圖).
(1) 當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2) 當(dāng)=λ,求λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,等邊三角形OAB的邊長為8,且其三個頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1) 求拋物線E的方程;
(2) 設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過y軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1) 若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com