精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,直線的參數方程為為參數),以原點為極點,軸為極軸的極坐標系中,圓的方程

1)寫出直線的普通方程和圓的直角坐標方程;

2)若點的直角坐標為,圓與直線交于兩點,求弦中點的直角坐標和的值.

【答案】(1)直線的普通方程為,圓的直角坐標方程為(2)弦的中點,

【解析】

(1)消去參數t可得直線的參數方程,利用極坐標化直角坐標的方法可得圓的直角坐標.

(2)聯立直線的參數方程和圓的直角坐標方程,結合參數方程的幾何意義和韋達定理即可確定中點坐標和的值.

1)由為參數),得直線的普通方程為

又由得圓的直角坐標方程為,即,

2)直線的參數方程代入圓的直角坐標方程,

,即

由于,故可設是上述方程的兩實數根,則

又直線過點兩點對應的參數分別為,

弦的中點對應的參數,

代入參數方程中得其直角坐標為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,正方形與梯形所在的平面互相垂直,, ,,.

1)求證:平面;

2)求證:平面平面;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中.

1)當時,判斷函數在定義域上的單調性;

2)求函數的極值點;

3)當時,試證明對任意的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,是以為底邊的等腰直角三角形.

(1)求證:;

(2)若的垂心,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.

1)當0≤x≤200時,求函數vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線.

(1)求的普通方程和的直角坐標方程;

(2)若曲線交于,兩點,的中點為,點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電動汽車“行車數據”的兩次記錄如下表:

記錄時間

累計里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計里程指汽車從出廠開始累計行駛的路程,累計耗電量指汽車從出廠開始累計消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對該車在兩次記錄時間段內行駛100公里的耗電量估計正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數據,再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數x∈[0,],若函數F(x)=f(x)-3的所有零點依次記為,且,則( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案