精英家教網(wǎng)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求四棱錐P-ABCD的體積.
分析:(I)連接BD,設AC與BD相交于點F.由已知中在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,我們易得AC⊥BD,PD⊥AC,由線面垂直的判定定理可以得AC⊥平面PDB,再由線面垂直的性質(zhì)定理,即可得到AC⊥DE;
(Ⅱ)連接EF,由(Ⅰ)的結(jié)論可知AC⊥平面PDB,EF?平面PBD,所以AC⊥EF,結(jié)合已知中AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.我們可以求出EF,F(xiàn)B,PD的值,將PD值,及底面四邊形ABCD的面積求出后,代入棱錐體積公式,即可得到答案.
解答:解:(Ⅰ)證明:連接BD,設AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.
又因為PD⊥平面ABCD,AC?平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE?平面PBD,所以AC⊥DE.
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF?平面PBD,所以AC⊥EF.
S△ACE=
1
2
AC•EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=
1
2
×6×EF=3,解得EF=1.
由△PDB∽△FEB,得PD:EF=BP:FB.
由于EF=1,F(xiàn)B=4,PB=
PD2+64
,所以PB=4PD,即
PD2+64
=4PD.
解得PD=
8
15
15

VP-ABCD=
1
3
S□ABCD•PD=
1
3
×24×
8
15
15
=
64
15
15
點評:本題考查的知識點是直線與平面垂直的性質(zhì),棱錐的體積,其中在求棱錐的體積時,求出棱錐的高及底面面積是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案