若方程
x2
n-2
+
y2
n+3
=1
表示焦點在y軸上的雙曲線,則n的取值范圍( 。
A.n>2B.n<-3C.-3<n<2D.n<-3或n>2
∵方程
x2
n-2
+
y2
n+3
=1表示焦點在y軸上的雙曲線,
n+3>0
n-2<0
,解得-3<n<2.
故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線
x2
9
-
y2
16
=1的右焦點為圓心,且與兩條漸近線相切的圓的方程是(  )
A.(x+5)2+y2=9B.(x+5)2+y2=16C.(x-5)2+y2=9D.(x-5)2+y2=16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線
x2
m
-y2=1
的一條漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓和雙曲線
y2
16
-
x2
m
=1(m>0)有相同的焦點,P(3,4)是橢圓和雙曲線漸近線的一個交點,求m的值及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

點P是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓C2:x2+y2=a2+b2的一個交點,且2∠PF1F2=∠PF2F1,其中F1、F2分別為雙曲線C1的左右焦點,則雙曲線C1的離心率為( 。
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線
x2
a2
-
y2
b2
=1
的左焦點F作⊙O:x2+y2=a2的兩條切線,記切點為A,B,雙曲線左頂點為C,若∠ACB=120°,則雙曲線的漸近線方程為( 。
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
的離心率e=2,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)滿足( 。
A.必在圓x2+y2=2內(nèi)B.必在圓x2+y2=2外
C.必在圓x2+y2=2上D.以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F為雙曲線
x2
16
-
y2
9
=1
的左焦點,在x軸上F點的右側(cè)有一點A,以FA為直徑的圓與雙曲線左、右兩支在x軸上方的交點分別為M,N,則
|FN|-|FM|
|FA|
的值為( 。
A.
2
5
B.
5
2
C.
5
4
D.
4
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,則此雙曲線的離心率為(  )
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

同步練習冊答案