已知函數(shù)f(x)=數(shù)學(xué)公式x2+lnx
(1)求函數(shù)f(x)在[1,e]上的最大值,最小值;
(2)求證:在區(qū)間[1,+∝)上,函數(shù)f(x)的圖象在函數(shù)g(x)=數(shù)學(xué)公式x3圖象的下方.

解:(1)由f(x)=x2+lnx有f′(x)=x+(2分)
當(dāng)x∈[1,0]時,f′(x)>0
∴fmax(x)=f(e)=e2+1,
fmax(x)=f(1)=(6分)
(2)設(shè)F(x)=x2+lnx-x3
則F′(x)=x+-2x2=
當(dāng)x∈[1,+∞)時,F(xiàn)′(x)<0,
且F(1)=-<0故x∈[1,+∞)時F(x)<0
x2+lnx<x3,得證(12分)
分析:(1)先求導(dǎo),由導(dǎo)數(shù)研究函數(shù)的單調(diào)、極值,計算端點函數(shù)值,比較極值與端點函數(shù)值,進而求出函數(shù)的最大值、最小值;
(2)構(gòu)造函數(shù)設(shè)F(x)=x2+lnxx3,利用導(dǎo)數(shù)可知函數(shù)F(x)的單調(diào)性為遞減,從而可得F(x)<F(1)=0可證.
點評:本題主要考查了導(dǎo)數(shù)的應(yīng)用:求單調(diào)區(qū)間,求極值、最值,利用單調(diào)性證明不等式,解(2)的關(guān)鍵是構(gòu)造函數(shù),轉(zhuǎn)化為研究函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案