如圖,已知橢圓的左焦點為,過點的直線交橢圓于兩點,線段的中點為的中垂線與軸和軸分別交于兩點.

(1)若點的橫坐標為,求直線的斜率;
(2)記△的面積為,△為原點)的面積為.試問:是否存在直線,使得?說明理由.
(1)(2)不存在直線,使得

試題分析:(Ⅰ)解:依題意,直線的斜率存在,設其方程為
將其代入,整理得
,,所以 .     3分
故點的橫坐標為.依題意,得,
解得 .          5分
(Ⅱ)解:假設存在直線,使得 ,顯然直線不能與軸垂直.

由(Ⅰ)可得 .               6分
因為 ,所以 ,
解得 , 即 .        8分
因為 △∽△,所以
所以 ,     10分
整理得
因為此方程無解,所以不存在直線,使得 .        12分
點評:直線與橢圓相交時常聯(lián)立方程借助于方程根與系數(shù)的關系整理化簡,此類題目計算量較大要求學生具有較高的數(shù)據(jù)處理能力
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為,且橢圓過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點分別為F1、F2,P是橢圓上的一點,,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;
(3)設點關于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓的左右頂點,在長軸上隨機任取點,過作垂直于軸的直線交橢圓于點,則使的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相切,直線軸交于點,當為何值時的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,則點M的軌跡是( )
A.線段B.直線C.橢圓D.圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知、是橢圓的左、右焦點,弦,則的周長為        .

查看答案和解析>>

同步練習冊答案