9.已知函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x2,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-k有4個零點,則實數(shù)k的取值范圍是( 。
A.[$\frac{1}{4}$,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.(0,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

分析 利用條件得f(x)=x2,x∈[-1,1],又周期為2,可以畫出其在整個定義域上的圖象,利用數(shù)形結(jié)合可得結(jié)論.

解答 解:函數(shù)f(x)滿足f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x),
故f(x)是周期為2的周期函數(shù).
當(dāng)x∈[-1,0]時,-x∈[0,1]時,
∴f(-x)=(-x)2=x2,
∵f(x)是偶函數(shù),
∴f(-x)=f(x)=x2,x∈[-1,0],
即當(dāng)x∈[-1,1]時,f(x)=x2 ,當(dāng)x∈[1,3]時,f(x)=(x-2)2
作出函數(shù)f(x)在區(qū)間[-1,3]上的圖象,
由g(x)=f(x)-k=0,得f(x)=k,
由于函數(shù)g(x)=f(x)-k有4個零點,故函數(shù)y=f(x)的圖象與y=k有4個交點,
則0<k<1,
故選:C.

點評 本題主要考查函數(shù)的周期性的應(yīng)用,函數(shù)的零點與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{\sqrt{x-{x}^{2}}}{|x+3|-3}$+(3x-2)0的定義域為(0,$\frac{2}{3}$)∪($\frac{2}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)是定義在R上的函數(shù),且對任意x、y∈R,f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)>0.
(1)求f(0)的值;
(2)證明函數(shù)f(x)是奇函數(shù);
(3)證明函數(shù)f(x)是R上的增函數(shù);
(4)解不等式f(2a2)+f(5a-2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實數(shù)x,y滿足x2+y2-2x+6y+9=0,則|$\sqrt{3}$x+y-$\sqrt{3}$|的最大值、最小值分別為 (  )
A.5、1B.5、0C.7、1D.7、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.全集U={1,2,3,4,5,6,7,8,9},(∁UA)∪∁UB={2,3,4,6,7,8},(∁UA)∩B={3,7},(∁UA)∪B={1,3,5,6,7,8,9}.求A,B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={a1,a2,a3,…am},D={a1,a2,a3,…an},且n>m,給出下列命題
①滿足A⊆C⊆D的集合C的個數(shù)為2n-m;
②滿足A?C⊆D的集合C的個數(shù)為2n-m-1
③滿足A⊆C?D的集合C的個數(shù)為2n-m-1;
④滿足A?C?D的集合C的個數(shù)為2n-m-2
其中正確的是( 。
A.①③B.②③C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(2x)=2x+1,則f(2)=3,若f(t)=3,則t=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=-(a+1)lnx+ax-$\frac{1}{x}$,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{\sqrt{2}+x,x≥0}\end{array}\right.$則f(0)=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案