已知函數(shù)f(x)=x2-2mx+m2+4m-2.
(1)若函數(shù)f(x)在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[0,1]上有最小值-3,求實(shí)數(shù)m的值.
解:f(x)=(x-m)
2+4m-2.
(1)由f(x)在區(qū)間[0,1]上是單調(diào)遞減函數(shù),得m≥1.
故實(shí)數(shù)m的取值范圍是[1,+∞).
(2)①當(dāng)m<0時(shí),f(x)在區(qū)間[0,1]上單調(diào)遞增,f(x)
min=f(0)=m
2+4m-2=-3.
解得m=-2-
,或m=-2+
;
②當(dāng)0≤m≤1時(shí),f(x)
min=f(m)=4m-2=-3,解得m=-
(舍);
③當(dāng)m>1時(shí),f(x)在[0,1]上單調(diào)遞減,f(x)
min=f(1)=m
2+2m-1=-3.無(wú)解;
綜上,實(shí)數(shù)m的值是-2±
.
分析:(1)由函數(shù)f(x)在區(qū)間[0,1]上是單調(diào)遞減函數(shù),知[0,1]為函數(shù)f(x)減區(qū)間的子集,由此可得m的取值范圍;
(2)對(duì)m分類討論,求出f(x)在區(qū)間[0,1]上的最小值,使其等于-3,解出即可;
點(diǎn)評(píng):本題考查二次函數(shù)的單調(diào)性及二次函數(shù)在給定區(qū)間上的最值問(wèn)題,考查分類討論思想,屬基礎(chǔ)題.