【題目】已如橢圓C:的兩個焦點與其中一個頂點構(gòu)成一個斜邊長為4的等腰直角三角形.
(1)求橢圓C的標準方程;
(2)設(shè)動直線l交橢圓C于P,Q兩點,直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
【答案】(1);(2)△OPQ的面積為定值,且此定值為,見解析
【解析】
(1)根據(jù)等腰直角三角形可知,,根據(jù)求解橢圓方程;(2)當與軸垂直時,設(shè),代入和橢圓方程,得到面積,當與軸不垂直時,設(shè)直線l的方程為,聯(lián)立方程,得到根與系數(shù)的關(guān)系,并表示面積,得到面積是定值.
(1)設(shè)橢圓C的左、右焦點分別為F1,F(xiàn)2.依題查,有得,則,
所以橢圓C的標準方程為.
(2)證明:①當直線1與x軸垂直時,設(shè)直線l的方程為,,.
由,且,解得,或,,所以.
②當直線l與x軸不垂直時,設(shè)直線l的方程為,,.
聯(lián)立直線l和橢圓C的方程,得整理得.
,,.
由,則,即,
所以,
即,整理得,則.
又,
點O到直線PQ的距離為,所以.
綜上,△OPQ的面積為定值,且此定值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)若直線與曲線交于兩點,問是否在軸上存在一點,使得當變動時總有?若存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓,點,是圓上任意一點,線段的垂直平分線與半徑相交于點,設(shè)點的軌跡為曲線。
(1)求曲線的方程;
(2)若,設(shè)過點的直線與曲線分別交于點,其中,求證:直線必過軸上的一定點。(其坐標與無關(guān))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求實數(shù)取值范圍;
(3)若當時,恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,過點的直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,記直線與曲線分別交于兩點.
(1)求曲線和的直角坐標方程;
(2)證明:成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從三鎮(zhèn)共選40名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,,繪制成如圖所示的頻率分布直方圖.
(1)求這40人中有多少人來自鎮(zhèn),并估計三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,從三鎮(zhèn)的所有基層干部中隨機選取3人,記這3人中工作出色的人數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市自2014年至2019年每年年初統(tǒng)計得到的人口數(shù)量如表所示.
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)(單位:萬) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)設(shè)第年的人口數(shù)量為(2014年為第1年),根據(jù)表中的數(shù)據(jù),描述該城市人口數(shù)量和2014年至2018年每年該城市人口的增長數(shù)量的變化趨勢;
(2)研究統(tǒng)計人員用函數(shù)擬合該城市的人口數(shù)量,其中的單位是年.假設(shè)2014年初對應(yīng),的單位是萬.設(shè)的反函數(shù)為,求的值(精確到0.1),并解釋其實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上任意一點,,且點為線段的中點.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)若為點關(guān)于原點的對稱點,過的直線交曲線于、 兩點,直線交直線于點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com