(2013•福建)已知函數(shù)f(x)=x-alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
分析:(1)把a(bǔ)=2代入原函數(shù)解析式中,求出函數(shù)在x=1時(shí)的導(dǎo)數(shù)值,直接利用直線方程的點(diǎn)斜式寫(xiě)直線方程;
(2)求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)可知,當(dāng)a≤0時(shí),f(x)>0,函數(shù)在定義域(0,+∝)上單調(diào)遞增,函數(shù)無(wú)極值,當(dāng)a>0時(shí),求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,利用原函數(shù)的單調(diào)性得到函數(shù)的極值.
解答:解:函數(shù)f(x)的定義域?yàn)椋?,+∞),f(x)=1-
a
x

(1)當(dāng)a=2時(shí),f(x)=x-2lnx,f(x)=1-
2
x
(x>0)
,
因而f(1)=1,f(1)=-1,
所以曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程為y-1=-(x-1),
即x+y-2=0
(2)由f(x)=1-
a
x
=
x-a
x
,x>0知:
①當(dāng)a≤0時(shí),f(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無(wú)極值;
②當(dāng)a>0時(shí),由f(x)=0,解得x=a.
又當(dāng)x∈(0,a)時(shí),f(x)<0,當(dāng)x∈(a,+∞)時(shí),f(x)>0.
從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a-alna,無(wú)極大值.
綜上,當(dāng)a≤0時(shí),函數(shù)f(x)無(wú)極值;
當(dāng)a>0時(shí),函數(shù)f(x)在x=a處取得極小值a-alna,無(wú)極大值.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,考查了利用導(dǎo)數(shù)研究函數(shù)的極值,考查了分類(lèi)討論得數(shù)學(xué)思想,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)已知集合A={1,a},B={1,2,3},則“a=3”是“A⊆B“的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)已知某一多面體內(nèi)接于球構(gòu)成一個(gè)簡(jiǎn)單組合體,如果該組合體的正視圖、俯視圖、均如圖所示,且圖中的四邊形是邊長(zhǎng)為2的正方形,則該球的表面積是
12π
12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)已知函數(shù)f(x)=x-1+
aex
(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1時(shí),若直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)已知函數(shù)f(x)=sin(wx+φ)(w>0,0<φ<π)的周期為π,圖象的一個(gè)對(duì)稱中心為(
π
4
,0),將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)
π
2
單位長(zhǎng)度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式
(2)是否存在x0∈(
π
6
,
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某種順序成等差數(shù)列?若存在,請(qǐng)確定x0的個(gè)數(shù),若不存在,說(shuō)明理由;
(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案