(2011•淄博二模)奇函數(shù)f(x)滿足對任意x∈R都有f(x+2)=-f(x)成立,且,則f(2008)+f(2009)+f(2010)+f(2011)=( 。
分析:由f(x+2)=-f(x),可求出函數(shù)的周期,然后利用周期性和奇偶性,求出f(2008)+f(2009)+f(2010)+f(2011)的值.
解答:解:由f(x+2)=-f(x),得f(x+4)=-f(x+2)=-[-f(x)]=f(x).
所以函數(shù)的周期為4.
因?yàn)楹瘮?shù)f(x)為奇函數(shù),所以f(0)=0,所以f(2)=-f(0)=0.
所以f(2008)+f(2009)+f(2010)+f(2011)
=f(0)+f(1)+f(2)+f(3)
=f(1)+f(-1)
=f(1)-f(1)=0.
故選A.
點(diǎn)評:本題主要考查函數(shù)周期性和奇偶性的應(yīng)用,利用條件先求出函數(shù)的周期性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為5
2

(1)求此時(shí)橢圓C的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓C相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,
3
3
)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)3x+y的最大值為7,最小值為1,則
a+b+c
a
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)在△ABC中,a、b、c分別為角A、B、C的對邊,若
m
=(sin2
B+C
2
,1),
n
=(cos2A+
7
2
,4),且
m
n

(Ⅰ)求角A;
(Ⅱ)當(dāng)a=
3
,S△ABC=
3
2
時(shí),求邊長b和角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)一個(gè)多面體的三視圖及直觀圖如圖所示:
(Ⅰ)求異面直線AB1與DD1所成角的余弦值:
(Ⅱ)試在平面ADD1A1中確定一個(gè)點(diǎn)F,使得FB1⊥平面BCC1B1
(Ⅲ)在(Ⅱ)的條件下,求二面角F-CC1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案