設(shè)為常數(shù),關(guān)于的不等式有非零實(shí)數(shù)解,則的最大值是(    )

A.                         B.    

C.         D.

 

【答案】

D

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2-x+a
1+x
(a為實(shí)常數(shù)),y=g(x)與y=e-x的圖象關(guān)于y軸對稱.
(1)若函數(shù)y=f[g(x)]為奇函數(shù),求a的取值.
(2)當(dāng)a=0時(shí),若關(guān)于x的方程f[g(x)]=
g(x)
m
有兩個(gè)不等實(shí)根,求m的范圍;
(3)當(dāng)|a|<1時(shí),求方程f(x)=g(x)的實(shí)數(shù)根個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

    已知函數(shù)f(x)=x21(x1)的圖象是C1,函數(shù)y=g(x)的圖象C2C1關(guān)于直線y=x對稱.

    (1)求函數(shù)y=g(x)的解析式及定義域M;

    (2)對于函數(shù)y=h(x),如果存在一個(gè)正的常數(shù)a,使得定義域A內(nèi)的任意兩個(gè)不等的值x1,x2都有|h(x1)h(x2)|a|x1x2|成立,則稱函數(shù)y=h(x)A的利普希茨Ⅰ類函數(shù).試證明:y=g(x)M上的利普希茨Ⅰ類函數(shù);

    (3)設(shè)A、B是曲線C2上任意不同兩點(diǎn),證明:直線AB與直線y=x必相交.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

    已知函數(shù)f(x)=x21(x1)的圖象是C1,函數(shù)y=g(x)的圖象C2C1關(guān)于直線y=x對稱.

    (1)求函數(shù)y=g(x)的解析式及定義域M;

    (2)對于函數(shù)y=h(x),如果存在一個(gè)正的常數(shù)a,使得定義域A內(nèi)的任意兩個(gè)不等的值x1,x2都有|h(x1)h(x2)|a|x1x2|成立,則稱函數(shù)y=h(x)A的利普希茨Ⅰ類函數(shù).試證明:y=g(x)M上的利普希茨Ⅰ類函數(shù);

    (3)設(shè)A、B是曲線C2上任意不同兩點(diǎn),證明:直線AB與直線y=x必相交.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:選擇題

已知f(x)=bx+1,為關(guān)于x的一次函數(shù),b不等0且不等于1的常數(shù),若設(shè),則數(shù)列

             

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式(a為實(shí)常數(shù)),y=g(x)與y=e-x的圖象關(guān)于y軸對稱.
(1)若函數(shù)y=f[g(x)]為奇函數(shù),求a的取值.
(2)當(dāng)a=0時(shí),若關(guān)于x的方程數(shù)學(xué)公式有兩個(gè)不等實(shí)根,求m的范圍;
(3)當(dāng)|a|<1時(shí),求方程f(x)=g(x)的實(shí)數(shù)根個(gè)數(shù),并加以證明.

查看答案和解析>>

同步練習(xí)冊答案