已知函數(shù)f(x)=x2+ax+b,且f(x)的圖象關(guān)于直線x=1對(duì)稱.
(1)求實(shí)數(shù)a的值;  
(2)利用單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù).
分析:(1)由函數(shù)f(x)=x2+ax+b,且f(x)的圖象關(guān)于直線x=1對(duì)稱,知-
a
2
=1,由此能求出a.
(2)由(1)知 f ( x )=x2-2x+b,再用定義法證明函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù).
解答:(本小題滿分12分)
解:(1)∵函數(shù)f(x)=x2+ax+b,且f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴-
a
2
=1,解得a=-2.…(3分)
(2)根據(jù)(1)可知 f ( x )=x2-2x+b,
下面證明函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù).
設(shè)x1>x2≥1,則f(x1)-f(x2)…(5分)
=(x12-2x1+b)-(x22-2x2+b
=(x12-x22)-2(x1-x2
=(x1-x2)(x1+x2-2)…(8分)
∵x1>x2≥1,則x1-x2>0,且x1+x2-2>2-2=0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),…(11分)
故函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù).…(12分)
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì)及其應(yīng)用,解題時(shí)要認(rèn)真審題,注意單調(diào)性的定義證明方法的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案